Hydrogen Peroxide Elicits Constriction of Skeletal Muscle Arterioles by Activating the Arachidonic Acid Pathway.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Aims: The molecular mechanisms of the vasoconstrictor responses evoked by hydrogen peroxide (H2O2) have not been clearly elucidated in skeletal muscle arterioles. Methods and Results: Changes in diameter of isolated, cannulated and pressurized gracilis muscle arterioles (GAs) of Wistar-Kyoto rats were determined under various test conditions. H2O2 (10–100 µM) evoked concentration-dependent constrictions in the GAs, which were inhibited by endothelium removal, or by antagonists of phospholipase A (PLA; 100 µM 7,7-dimethyl-(5Z,8Z)-eicosadienoic acid), protein kinase C (PKC; 10 µM chelerythrine), phospholipase C (PLC; 10 µM U-73122), or Src family tyrosine kinase (Src kinase; 1 µM Src Inhibitor-1). Antagonists of thromboxane A2 (TXA2; 1 µM SQ-29548) or the non-specific cyclooxygenase (COX) inhibitor indomethacin (10 µM) converted constrictions to dilations. The COX-1 inhibitor (SC-560, 1 µM) demonstrated a greater reduction in constriction and conversion to dilation than that of COX-2 (celecoxib, 3 µM). H2O2 did not elicit significant changes in arteriolar Ca2+ levels measured with Fura-2. Conclusions: These data suggest that H2O2 activates the endothelial Src kinase/PLC/PKC/PLA pathway, ultimately leading to the synthesis and release of TXA2 by COX-1, thereby increasing the Ca2+ sensitivity of the vascular smooth muscle cells and eliciting constriction in rat skeletal muscle arterioles. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)