Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Role of granule-cell transmission in memory trace of cerebellum-dependent optokinetic motor learning.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Abstract:
Adaptation of the optokinetic response (OKR) is an eye movement enhanced by repeated motion of a surrounding visual field and represents a prototype of cerebellum-dependent motor learning. Purkinje cells and vestibular nuclei (VN) receive optokinetic and retinal slip signals via the mossy fiber-granule cell pathway and climbing-fiber projections, respectively. To explore the neural circuits and mechanisms responsible for OKR adaptation, we adopted the reversible neurotransmission-blocking (RNB) technique, in which granule-cell transmission to Purkinje cells was selectively and reversibly blocked by doxycycline-dependent expression of transmission-blocking tetanus toxin in granule cells. Blockade of granule-cell inputs abolished both short-term and long-term OKR adaptation induced by repeated OKR training, but normal levels of both responses were immediately evoked in the pretrained RNB mice by OKR retraining once granule-cell transmission had recovered. Importantly, eye movement elicited by electrical stimulation of the cerebellar focculus was elevated by long-term but not by short-term OKR training in adaptive OKR-negative RNB mice. Furthermore, when the flocculus of adaptive OKR-negative RNB mice was electrically excited in-phase with OKR stimulation, these mice exhibited long-term adaptive OKR. These results indicate that convergent information to the VN was critical for acquisition and storage of long-term OKR adaptation with conjunctive action of Purkinje cells for OKR expression. Interestingly, in contrast to conditioned eyeblink memory, the expression of once acquired adaptive long-term OKR was not abrogated by blockade of granule-cell transmission, suggesting that distinct forms of neural plasticity would operate in different forms of cerebellum-dependent motor learning. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Proceedings of the National Academy of Sciences of the United States of America is the property of National Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.