The Temporal Evolution and Global Spread of Cauliflower mosaic virus, a Plant Pararetrovirus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Cauliflower mosaic virus (CaMV) is a plant pararetrovirus with a double-stranded DNA genome. It is the type member of the genus Caulimovirus in the family Caulimoviridae. CaMV is transmitted by sap inoculation and in nature by aphids in a semi-persistent manner. To investigate the patterns and timescale of CaMV migration and evolution, we sequenced and analyzed the genomes of 67 isolates of CaMV collected mostly in Greece, Iran, Turkey, and Japan together with nine published sequences. We identified the open-reading frames (ORFs) in the genomes and inferred their phylogeny. After removing recombinant sequences, we estimated the substitution rates, divergence times, and phylogeographic patterns of the virus populations. We found that recombination has been a common feature of CaMV evolution, and that ORFs I–V have a different evolutionary history from ORF VI. The ORFs have evolved at rates between 1.71 and 5.81×10−4 substitutions/site/year, similar to those of viruses with RNA or ssDNA genomes. We found four geographically confined lineages. CaMV probably spread from a single population to other parts of the world around 400–500 years ago, and is now widely distributed among Eurasian countries. Our results revealed evidence of frequent gene flow between populations in Turkey and those of its neighboring countries, with similar patterns observed for Japan and the USA. Our study represents the first report on the spatial and temporal spread of a plant pararetrovirus. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of PLoS ONE is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)