Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Northern rivers and lakes process large quantities of organic and inorganic carbon from the surrounding terrestrial ecosystems. These external carbon inputs fuel widespread CO2 supersaturation in continental waters, and the resulting CO2 emissions from lakes and rivers are now recognized as a globally significant loss of terrestrial production to the atmosphere. Whereas the magnitude of emissions has received much attention, the pathways of C delivery and processing that generate these emissions are still not well-understood. CO; outgassing in aquatic systems has been unequivocally linked to microbial degradation and respiration of terrestrial organic carbon (OC), but the nature (i.e., age and source) of this OC respired in surface waters is largely unknown. We present direct radiocarbon measurements of OC respired by bacteria in freshwater aquatic systems, specifically temperate lakes and streams in Québec. Terrestrial OC fuels much of the respiration in these systems, and our results show that a significant fraction of the respired terrestrial OC is old (in the range of 1,000-3,000 y B.P.). Because the bulk OC pools in these lakes is relatively young, our results also suggest selective removal of an old but highly bioreac-tive terrestrial OC pool and its conversion to CO2 by bacteria. The respiration of ancient 14C-depleted terrestrial C in northern lakes and rivers provides a biological link between contemporary aquatic carbon biogeochemistry and paleo-conditions in the watershed, and it implies the aquatic-mediated return to the atmosphere of C putatively considered permanently stored, thus challenging current models of long-term C storage in terrestrial reservoirs. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Proceedings of the National Academy of Sciences of the United States of America is the property of National Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)