Effects of blackcurrant-based juice on atherosclerosis-related biomarkers in cultured macrophages and in human subjects after consumption of a high-energy meal.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Regular consumption of fruit and vegetables may be associated with decreased CVD risk. In the present study, we investigated the effects of blackcurrant (BC) juice, rich in polyphenols and ascorbic acid, on oxidative and inflammatory biomarkers in cultured macrophages in vitro and in human subjects with an atherosclerosis-prone phenotype (after consumption of a high-energy meal). In cultured macrophages (RAW264.7), BC treatment significantly inhibited lipopolysaccharide-induced inflammation as indicated by lower mRNA levels of TNF-α, IL-1β and inducible NO synthase (iNOS) and lower nuclear p65 levels indicating decreased NF-κB activity. iNOS protein levels were lower and haem oxygenase 1 levels higher in BC-treated cells when compared with untreated controls. Subjects given a high-energy meal had elevated serum glucose and insulin levels with no significant difference between the BC-based juice and placebo treatment groups. TAG following meal ingestion tended to be attenuated after the BC treatment. Plasma ascorbic acid and radical-scavenging capacity were decreased following placebo meal consumption; however, BC significantly elevated both parameters compared with baseline and placebo ingestion. Plasma oxidised LDL, α-tocopherol and paraoxonase activity were unchanged in both treatment groups. Furthermore, production of TNF-α and IL-1β was not significantly changed by BC meal consumption. The present results suggest potential antioxidative and anti-inflammatory properties of BC in vitro in cultured macrophages. Although the observations were not directly transferable to a postprandial in vivo situation, the present results show that BC juice consumption may improve postprandial antioxidant status as indicated by higher ascorbic acid levels and free radical-scavenging capacity in plasma. [ABSTRACT FROM PUBLISHER]
    • Abstract:
      Copyright of British Journal of Nutrition is the property of Cambridge University Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)