Effect of the CB(1) receptor antagonists rimonabant and AM251 on the firing rate of dorsal raphe nucleus neurons in rat brain slices.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      Background and Purpose: Previous studies have suggested a regulation of 5-hydroxytryptamine (5-HT) neurons by the endocannabinoid system. The aim of our work was to examine the effect of two CB(1) receptor antagonists, SR141716A (rimonabant, Sanofi-Synthélabo Recherche, Montpellier, France) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251, Tocris Cookson, Bristol, UK), on the firing rate of dorsal raphe nucleus (DRN) neurons.Experimental Approach: Single-unit extracellular recordings were performed to study the effect of CB(1) receptor antagonists in slices of the DRN from rat brain.Key Results: Rimonabant (1 microM) and AM251 (1 microM) decreased the firing rate of about 50% of all the recorded DRN 5-HT cells. The GABA(A)receptor antagonist picrotoxin (20 microM) (Sigma) prevented and also reversed the inhibitory effect of rimonabant (1 microM) and AM251 (1 microM), suggesting that CB(1) receptors regulate 5-HT neurons through the GABAergic system. However, the CB(1)/CB(2) receptor agonist R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)-methyl]pyrrolol[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt (10 microM) (WIN55212-2, Sigma, St. Louis, MO, USA) failed to change the firing activity of non-5-HT (presumably GABAergic) neurons in the DRN. The endocannabinoid N-(2-hydroxyethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (anandamide, Tocris Cookson) (10 microM) also inhibited the firing activity of a number of 5-HT neurons, but this inhibition was not blocked by rimonabant (1 microM) or AM251 (1 microM), and the stable analogue R-(+) N-(2-hydroxy-1methylethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (methanandamide, Tocris Cookson) (10 microM) did not mimic this effect. The selective CB(1) receptor agonist arachidonoyl-2-chloroethylamide (ACEA) (1 microM) only slightly increased the firing rate of DRN 5-HT cells.Conclusions and Implications: These results suggest a tonic/constitutive regulation of DRN 5-HT neurons by the endocannabinoid system, which may occur through a CB(1) receptor-mediated inhibition of the GABAergic system. The inhibitory effect of anandamide may be mediated through a CB(1) receptor-independent mechanism. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of British Journal of Pharmacology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)