Skeletal muscle mass recovery from atrophy in IL-6 knockout mice.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Skeletal muscle interleukin-6 (IL-6) expression is induced by continuous contraction, overload-induced hypertrophy and during muscle regeneration. The loss of IL-6 can alter skeletal muscle's growth and extracellular matrix remodelling response to overload-induced hypertrophy. Insulin-like growth factor-1 (IGF-1) gene expression and related signalling through Akt/mTOR is a critical regulator of muscle mass. The significance of IL-6 expression during the recovery from muscle atrophy is unclear. This study's purpose was to determine the effect of IL-6 loss on mouse gastrocnemius (GAS) muscle mass during recovery from hindlimb suspension (HS)-induced atrophy. Female C57BL/6 [wild type (WT)] and IL-6 knockout (IL-6 KO) mice at 10 weeks of age were assigned to control, HS or HS followed by normal cage ambulation groups. GAS muscle atrophy was induced by 10 days of HS. HS induced a 20% loss of GAS mass in both WT and IL-6 KO mice. HS+7 days of recovery restored WT GAS mass to cage-control values. GAS mass from IL-6 KO mice did not return to cage-control values until HS+14 days of recovery. Both IGF-1 mRNA expression and Akt/mTOR signalling were increased in WT muscle after 1 day of recovery. In IL-6 KO muscle, IGF-1 mRNA expression was decreased and Akt/mTOR signalling was not induced after 1 day of recovery. MyoD and myogenin mRNA expression were both induced in WT muscle after 1 day of recovery, but not in IL-6 KO muscle. Muscle IL-6 expression appears important for the initial growth response during the recovery from disuse. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Acta Physiologica is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)