Spatial memory alterations by activation of septal 5HT receptors: no implication of cholinergic septohippocampal neurons.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Introduction: In rats, activation of medial septum (MS) 5-HT receptors with the 5-HT/5-HT receptor agonist 8-OH-DPAT disrupts encoding and consolidation, but not retrieval of a spatial memory in the water maze task. These findings might be explained by an action of 8-OH-DPAT on 5-HT receptors located on cholinergic neurons which the drug could transiently hyperpolarise. If so, selective damage of these neurons should mimic the effects of 8-OH-DPAT, or, at least, synergistically interfere with them. Methods: To test this hypothesis, rats were subjected to intraseptal infusions of 8-OH-DPAT (or phosphate-buffered saline) during acquisition of a water maze task before and/or after 192 IgG-saporin-induced MS cholinergic lesion (vs. sham-operated). Results: We confirmed that only pre-acquisition intraseptal 8-OH-DPAT infusions prevented learning and subsequent drug-free retrieval of the platform location in intact rats and found that (1) the cholinergic lesion did not prevent recall of the platform location, and (2) the impairing effects of 8-OH-DPAT were similar in sham-operated and lesioned rats, whether naïve or not, to the task before lesion surgery. Conclusions: An action of 8-OH-DPAT on only MS cholinergic neurons is not sufficient to account for the drug-induced memory impairments. A concomitant 8-OH-DPAT-induced hyperpolarisation of cholinergic and/or GABAergic and/or glutamatergic neurons (intact rats), or of only GABAergic and/or glutamatergic ones after cholinergic lesion, might be necessary to obliterate task acquisition, confirming that, in the MS, (1) the three neuronal populations could cooperate to process hippocampal-dependent information, and (2) non-cholinergic septohippocampal neurons might be more important than cholinergic ones in serotonin-induced modulation of hippocampus-dependent memory processing. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Psychopharmacology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)