Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      We study a general equilibrium system where agents have heterogeneous beliefs concerning realizations of possible outcomes. The actual outcomes feed back into beliefs thus creating a complicated nonlinear system. Beliefs are updated via a genetic algorithm learning process which we interpret as representing communication among agents in the economy. We are able to illustrate a simple principle: genetic algorithms can be implemented so that they represent pure learning effects (i.e., beliefs updating based on realizations of endogenous variables in an environment with heterogeneous beliefs). Agents optimally solve their maximization problem at each date given their beliefs at each date. We report the results of a set of computational experiments in which we find that our population of artificial adaptive agents is usually able to coordinate their beliefs so as to achieve the Pareto superior rational expectations equilibrium of the model. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Computational Economics is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)