Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A Nonlinear Model of the Neural Integrator Improves Detection of Deficits in the Human VOR.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Subject Terms:
- Abstract:
A nonlinear model has been proposed to describe the set-point-dependent characteristics of the neural integrator (NI) in the oculomotor system. It was shown to yield improved prediction of slow-phase eye position in the vestibulo-ocular reflex (VOR) of normal subjects, when compared to the classical linear model of the NI. In this paper, we compare the parameters of this nonlinear NI model fitted to VOR data from: 1) compensated subjects diagnosed with vestibular deficiencies such as vestibular neuronitis andMeniere's disease and 2) normal (symptom-free) subjects. The identifiedmodels exhibit more severe nonlinearity in VOR patients than the normal controls. Several of the identified parameters in patients unmask asymmetries and more context dependence in the NI and in the VOR gain that are consistent with the lesioned side and could serve to support detection of lesions even after compensation. [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of IEEE Transactions on Biomedical Engineering is the property of IEEE and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.