Item request has been placed!
×
Item request cannot be made.
×
Processing Request
L-701,324, a selective antagonist at the glycine site of the NMDA receptor, counteracts haloperidol-induced muscle rigidity in rats.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Subject Terms:
- Abstract:
Abstract Rationale: It has recently been suggested that the overactivity of glutamatergic neurotransmission may contribute to the pathophysiology of Parkinson's disease. Therefore, a search for new compounds which block glutamatergic receptors and show antiparkinsonian properties in animal models of this disease seems to be justified. Objective: The aim of this study was to determine whether L-701,324 [7-chloro-4-hydroxy-3(3-phenoxy) phenylquinoline-2-(H)-one], a selective and full antagonist at the glycine site of the NMDA receptor, counteracts parkinsonian-like muscle rigidity and catalepsy induced by haloperidol in rats. Methods: The muscle tone was measured as the resistance developed to passive flexion and extension of the hind limb. Electromyographic (EMG) activity was additionally recorded in the gastrocnemius and tibialis anterior muscles. Results: L701,324 (2.5-40 mg/kg IP) dose-dependently decreased the muscle tone enhanced by haloperidol (1-5 mg/kg IP). Likewise, the haloperidol-enhanced resting EMG activity and the EMG reflex response to passive movements were diminished by lower and almost abolished by higher doses of L-701,324. However, up to a dose of 20 mg/kg IP, L-701,324 did not influence haloperidol (0.5 mg/kg IP)-induced catalepsy. Moreover, L-701,324 (1.25-5 mg/kg IP) given alone or together with haloperidol (0.5-1 mg/kg IP) disturbed rotarod performance. Gross observation of behaviour indicated that rats injected with L-701,324 in doses equal to or higher than 5 mg/kg, alone or in combination with haloperidol, were markedly ataxic, i.e. rats showed signs of disturbed balance and loss of control over their hind limbs. Conclusions: The present study suggests that L-701,324 exhibits a beneficial... [ABSTRACT FROM AUTHOR]
- Abstract:
Copyright of Psychopharmacology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
No Comments.