New Insights into Mechanisms of γ-Diketone-Induced Axonopathy.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Abstract:
      We analyzed the impact of axonopathy-inducing agents 1,2-diacetylbenzene (1,2-DAB) and 2,5-hexanedione (2,5-HD) on membrane-bound protein disulfide isomerase (mPDI) versus soluble PDI (sPDI), or PDI-family member thioredoxin (THX), and asked whether changes in PDI/THX were associated with production of oxidative/nitrosative species in the Sprague–Dawley rat. We show that 1,2-DAB and 2,5-HD lower the abundance of sPDI and THX. However, the protein expression of mPDI is increased in 1,2-DAB axonopathy and neuroproteins became more S-nitrosylated. The abundance of heme oxygenase-1 (HO-1) and isoforms of nitric oxide synthase (neuronal, endothelial, and inducible NOS) remained unchanged suggesting that S-nitrosylation occured via increased mPDI-transnitrosylation and/or diminished THX-denitrosylation. The transcription of PDI and glucose regulated protein-78 (GRP-78) remained unchanged indicating that post-translational modifications, e.g. S-nitrosylation, mediate the pathogenesis of γ-diketone axonopathy. These findings open opportunities for new therapeutic testing (e.g., supplementation with denitrosylating THX) in γ-diketone-induced axonal disease. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Neurochemical Research is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)