[Telemedicine and AI-supported diagnostics in the daily routine of visceral medicine].

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Grade M;Grade M; Uslar V; Uslar V
  • Source:
    Chirurgie (Heidelberg, Germany) [Chirurgie (Heidelb)] 2024 Dec 30. Date of Electronic Publication: 2024 Dec 30.
  • Publication Type:
    English Abstract; Journal Article; Review
  • Language:
    German
  • Additional Information
    • Transliterated Title:
      Telemedizin und KI-gestützte Diagnostik im Alltag der Viszeralmedizin.
    • Publication Information:
      Ahead of Print
    • Source:
      Publisher: Springer Medizin Country of Publication: Germany NLM ID: 9918383081906676 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2731-698X (Electronic) Linking ISSN: 27316971 NLM ISO Abbreviation: Chirurgie (Heidelb) Subsets: MEDLINE
    • Publication Information:
      Original Publication: [Heidelberg, Germany] : Springer Medizin, [2022]-
    • Abstract:
      Advances in telemedicine, exemplified by augmented reality (AR) and virtual reality (VR), are rapidly progressing. For instance, AR available over long distances has already been successfully utilized in crisis intervention, such as in war zones. The potential of telemedicine also appears promising in structurally weak areas or in the involvement of experts in emergency situations. Further research and development are needed on the avatars used in such telemedicine approaches to improve the sense of presence and thereby increase acceptance. Artificial intelligence (AI) in endoscopy, particularly in colonoscopy, is already a routine practice in many gastroenterology departments. The benefits are clearly evidenced by an increased adenoma detection rate (ADR). Studies have also shown a higher detection rate for sessile serrated adenomas (SSA) compared to the control group as well as a significantly increased rate of dysplastic Barrett's areas in the upper gastrointestinal (GI) tract (potential Barrett's carcinomas).
      Competing Interests: Einhaltung ethischer Richtlinien. Interessenkonflikt: M. Grade und V. Uslar geben an, dass kein Interessenkonflikt besteht. Alle beschriebenen Untersuchungen am Menschen oder an menschlichem Gewebe wurden mit Zustimmung der zuständigen Ethikkommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patient/-innen liegt eine Einverständniserklärung vor.
      (© 2024. The Author(s).)
    • References:
      Verhey JT, Haglin JM, Verhey EM, Hartigan DE (2020) Virtual, augmented, and mixed reality applications in orthopedic surgery. Int J Med Robotics Comput Assist Surg. https://doi.org/10.1002/rcs.2067. (PMID: 10.1002/rcs.2067)
      Woeltje KF (2007) Use Of Computerized Systems In Health Care Epidemology. In: Jarvis WR (Hrsg) Bennett und Brachmann’s Hospital Infections, 5. Aufl., S 121–129.
      Woeltje KF (2007) Use of computerized systems in health care epidemology. In: Jarvis WR (Hrsg) Bennett und Brachmann’s Hospital Infections, 5. Aufl., S 121–129.
      Cipolat C, Geiges M (2003) The history of telemedicin. Telemedicine Teledermatology (32):6–11.
      Vladzymyrskyy A, Jordanova M, Lievens F (2016) A century of telemedicine. Curatio sine distantia et tempora. A world wide overview—part 1. Malina Jordanova / International Society of Telemedicine & eHealth, Sofia.
      Amisha MP, Pathania M, Rathaur VK (2019) Overview of artificial intelligence in medicine. J Family Med Prim Care 8(7):2328–2331. https://doi.org/10.4103/jfmpc.jfmpc_440_19. (PMID: 10.4103/jfmpc.jfmpc_440_19314632516691444)
      Bou Nassif A, Manar AT, Qassim N, Afadar Y, Elgendy O (2022) Breast cancer detection using artificial intelligence techniques: A systematic literature review. Artif Intell Med 127:102276. https://doi.org/10.1016/j.artmed.2022.102276. (PMID: 10.1016/j.artmed.2022.102276)
      Jones OT, Matin RN, van der Schaar M, Prathivadi Bhayankaram K, Ranmuthu CKI, Islam MS, Behiyat D, Boscott R, Calanzani N, Emery J, Williams HC, Walter FM (2022) Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review. Lancet Digit Health 4(6):e466–e476. https://doi.org/10.1016/S2589-7500(22)00023-1. (PMID: 10.1016/S2589-7500(22)00023-135623799)
      https://www.kbv.de/html/praevention_darmkrebsfrueherkennung.php . Zugegriffen: 30. Juli 2024.
      Repici A, Badalamenti M, Maselli R, Correale L, Radaelli F, Rondonotti E, Anderloni A (2020) Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized. (PMID: 10.1053/j.gastro.2020.04.062)
      Cardoso R, Zhu A, Guo F, Heisser T, Hoffmeister M, Brenner H (2021) Incidence and mortality of proximal and distal colorectal cancer in Germany—trends in the era of screening colonoscopy. Dtsch Ärztebl Int 118:281–287. https://doi.org/10.3238/arztebl.m2021.0111. (PMID: 10.3238/arztebl.m2021.0111341807908287758)
      Barclay RL, Vicari JJ, Doughty AS, Johanson JF, Greenlaw RL (2006) Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. N Engl J Med 355:2533–2541. (PMID: 10.1056/NEJMoa05549817167136)
      Corley DA, Jenson CD, Marks AR et al (2014) Adenoma detection rate and risk of colorectal cancer and death. N Eng J Med 370:1298–1306. (PMID: 10.1056/NEJMoa1309086)
      Gubbiotti A, Spadaccini M, Badalamenti M, Hassan C, Repici A (2022) Key factors for improving adenoma detection rate. Expert Rev Gastroenterol Hepatol 16(9):819–833. https://doi.org/10.1080/17474124.2022.2128761. (PMID: 10.1080/17474124.2022.212876136151898)
      Hassan C, Wallace MB, Sharma P et al (2020) New artificial intelligence system: first validation study versus experienced endoscopists for colorectal polyp detection. Gut 69:799–800. (PMID: 10.1136/gutjnl-2019-31991431615835)
      Aziz M, Weissman S, Khan Z, Rawish F, Lee-Smith W, Nawras A, Adler DG (2020) Use of 2 Observers Increases Adenoma Detection Rate During Colonoscopy: Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 18:1240–1242. (PMID: 10.1016/j.cgh.2019.07.03331589976)
      Robert Koch-Institut, Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (2019) Krebs in Deutschland 2015/2016. Berlin.
      Kröner PT, Engels MM, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C (2021) Artificial intelligence in gastroenterology: a state-of-the-art review. World J Gastroenterol 27(40):6794–6824. https://doi.org/10.3748/wjg.v27.i40.6794. (PMID: 10.3748/wjg.v27.i40.6794347900088567482)
      Uche-Anya E, Anyane-Yeboa A, Berzin TM, Ghassemi M, May FP (2022) Artificial intelligence in gastroenterology and hepatology: how to advance clinical practice while ensuring health equity. Gut 71(9):1909–1915. https://doi.org/10.1136/gutjnl-2021-326271. (PMID: 10.1136/gutjnl-2021-32627135688612)
      Chen H, Sung JJY (2021) Potentials of AI in medical image analysis in gastroenterology and hepatology. J Gastroenterol Hepatol 36(1):31–38. https://doi.org/10.1111/jgh.15327. (PMID: 10.1111/jgh.1532733140875)
      Yang YJ, Bang CS (2019) Application of artificial intelligence in gastroenterology. World J Gastroenterol 25(14):1666–1683. https://doi.org/10.3748/wjg.v25.i14.1666. (PMID: 10.3748/wjg.v25.i14.1666310112536465941)
      Moldoveanu AC, Fierbinteanu-Braticevici C (2022) A primer into the current state of artificial intelligence in gastroenterology. J Gastrointestin Liver Dis 31(2):244–253. https://doi.org/10.15403/jgld-4180. (PMID: 10.15403/jgld-418035694986)
      Spadaccini M, Vespa E, Chandrasekar VT, Desai M, Patel HK, Maselli R, Fugazza A, Carrara S, Anderloni A, Franchellucci G, De Marco A, Hassan C, Bhandari P, Sharma P, Repici A (2022) Advanced imaging and artificial intelligence for Barrett’s esophagus: what we should and soon will do. World J Gastroenterol 28(11):1113–1122. https://doi.org/10.3748/wjg.v28.i11.1113. (PMID: 10.3748/wjg.v28.i11.1113354315038985480)
      Meinikheim M, Messmann H, Ebigbo A (2023) Role of artificial intelligence in diagnosing Barrett’s esophagus-related neoplasia. Clin Endosc 56(1):14–22. https://doi.org/10.5946/ce.2022.247. (PMID: 10.5946/ce.2022.247366464239902686)
      Bjørsum-Meyer T, Koulaouzidis A, Baatrup G (2022) Comment on “artificial intelligence in gastroenterology: a state-of-the-art review”. World J Gastroenterol 28(16):1722–1724. https://doi.org/10.3748/wjg.v28.i16.1722. (PMID: 10.3748/wjg.v28.i16.1722355819599048781)
      Visaggi P, de Bortoli N, Barberio B, Savarino V, Oleas R, Rosi EM, Marchi S, Ribolsi M, Savarino E (2022) Artificial intelligence in the diagnosis of upper gastrointestinal diseases. J Clin Gastroenterol 56(1):23–35. https://doi.org/10.1097/MCG.0000000000001629. (PMID: 10.1097/MCG.000000000000162934739406)
      Parasa S, Wallace M, Bagci U, Antonino M, Berzin T, Byrne M, Celik H, Farahani K, Golding M, Gross S, Jamali V, Mendonca P, Mori Y, Ninh A, Repici A, Rex D, Skrinak K, Thakkar SJ, van Hooft JE, Vargo J, Yu H, Xu Z, Sharma P (2020) Proceedings from the first global artificial intelligence in gastroenterology and endoscopy summit. Gastrointest Endosc 92(4):938–945.e1. https://doi.org/10.1016/j.gie.2020.04.044. (PMID: 10.1016/j.gie.2020.04.04432343978)
      Hann A, Walter BM, Mehlhase N et al (2019) Virtual reality in GI endoscopy: intuitive zoom for improving diagnostics and training. Gut 68:957–959. (PMID: 10.1136/gutjnl-2018-31705830228217)
      Hassan C, Wallace MB, Sharma P et al (2020) New artificial intelligence system: first validation study versus experienced endoscopists for colorectal polyp detection. Gut 69:799–800. (PMID: 10.1136/gutjnl-2019-31991431615835)
      Kuo RYL, Harrison C, Curran TA, Jones B, Freethy A, Cussons D, Stewart M, Collins GS, Furniss D (2022) Artificial intelligence in fracture detection: a systematic review and meta-analysis. Radiology 304(1):50–62. https://doi.org/10.1148/radiol.211785. (PMID: 10.1148/radiol.21178535348381)
      Lee S, Chu Y, Ryu J, Park YJ, Yang S, Koh SB (2022) Artificial intelligence for detection of cardiovascular-related diseases from wearable devices: a systematic review and meta-analysis. Yonsei Med J 63(Suppl):S93–S107. https://doi.org/10.3349/ymj.2022.63.S93. (PMID: 10.3349/ymj.2022.63.S93350406108790582)
      Prelaj A, Miskovic V, Zanitti M, Trovo F, Genova C, Viscardi G, Rebuzzi SE, Mazzeo L, Provenzano L, Kosta S, Favali M, Spagnoletti A, Castelo-Branco L, Dolezal J, Pearson AT, Russo LG, Proto C, Ganzinelli M, Giani C, Ambrosini E, Turajlic S, Au L, Koopman M, Delaloge S, Kather JN, de Braud F, Garassino MC, Pentheroudakis G, Spencer C, Pedrocchi ALG (2024) Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review. Ann Oncol 35(1):29–65. https://doi.org/10.1016/j.annonc.2023.10.125. (PMID: 10.1016/j.annonc.2023.10.12537879443)
      Thomas N, Eickhoff A (2024) Künstliche Intelligenz in der Koloskopie – Praxistauglich? Verdauungskrankheiten 42(3):108. (PMID: 10.5414/VDX01209)
      https://www.bosch-stiftung.de/de/publikation/gesundheitszentren-fuer-deutschland.
      https://www.pwc.de/de/gesundheitswesen-und-pharma/fachkraeftemangel-im-deutschen-gesundheitswesen-2022.html.
      Wang CL, Huang ZP, Chen K, Yan FH, Zhu LL, Shan YQ, Zhao ZY (2018) Adenoma miss rate determined by very shortly repeated colonoscopy: retrospective analysis of data from a single tertiary medical center in China. Medicine 97(38):e12297. (PMID: 10.1097/MD.0000000000012297302356756160154)
    • Contributed Indexing:
      Keywords: Adenoma detection rate; Augmented reality; Avatar; Colonoscopy; Virtual reality
      Local Abstract: [Publisher, German] Die Fortschritte von Augmented (AR) und Virtual Reality (VR) in der Telemedizin sind rasant. Eine über die Distanz verfügbare AR konnte beispielsweise bereits erfolgreich in der Krisenintervention, z. B. in Kriegsgebieten, eingesetzt werden. Vielversprechend erscheinen die Potenziale der Telemedizin auch in strukturschwachen Gebieten oder in der Hinzuschaltung von Expertinnen oder Experten in Notaufnahmesituationen. Der Einsatz von Avataren in der Telemedizin bedarf noch weiterer Forschung und Entwicklung, um das Gefühl der Präsenz zu verbessern und damit die Akzeptanz zu erhöhen. Künstliche Intelligenz in der Endoskopie v. a. in der Koloskopie ist bereits in vielen gastroenterologischen Abteilungen gelebte tägliche Praxis. Über eine erhöhte Adenomdetektionsrate (ADR) ist der Benefit klar belegt. Studien konnten zudem eine im Vergleich zur Kontrollgruppe erhöhte Detektionsrate für sessile serratierte Adenome (SSA) und eine signifikant erhöhte Rate an dysplastischen Barrett-Arealen im oberen Gastrointestinal(GI)-Trakt (eventuelle Barrett-Karzinome) zeigen.
    • Publication Date:
      Date Created: 20241231 Latest Revision: 20241231
    • Publication Date:
      20250101
    • Accession Number:
      10.1007/s00104-024-02213-8
    • Accession Number:
      39738552