References: Van der Slikke, R., Berger, M., Bregman, D. & Veeger, D. Push Characteristics in Wheelchair Court Sport Sprinting. Proc. Eng. 147, 730–734. https://doi.org/10.1016/j.proeng.2016.06.265 (2016). (PMID: 10.1016/j.proeng.2016.06.265)
Yang, Y. S., Koontz, A. M., Yeh, S. J. & Chang, J. J. Effect of backrest height on wheelchair propulsion biomechanics for level and uphill conditions. YAPMR 93(4), 654–659. https://doi.org/10.1016/j.apmr.2011.10.023 (2012). (PMID: 10.1016/j.apmr.2011.10.023)
Mason, B. S., Lemstra, M., van der Woude, L. H. V., Vegter, R. & Goosey-Tolfrey, V. L. Influence of wheel configuration on wheelchair basketball performance: Wheel stiffness, tyre type and tyre orientation. Med. Eng. Phys. 37(4), 392–399. https://doi.org/10.1016/j.medengphy.2015.02.001 (2015). (PMID: 10.1016/j.medengphy.2015.02.00125726151)
Sauret, C., Vaslin, P., Lavaste, F., de Saint Remy, N. & Cid, M. Effects of user’s actions on rolling resistance and wheelchair stability during handrim wheelchair propulsion in the field. Med. Eng. Phys. 35(3), 289–297. https://doi.org/10.1016/j.medengphy.2012.05.001 (2013). (PMID: 10.1016/j.medengphy.2012.05.00123200111)
Tomlinson, J. D. Managing Maneuverability and Rear Stability of Adjustable Manual Wheelchairs: An Update. Physical Therapy 80(9), 904–911. https://doi.org/10.1093/ptj/80.9.904 (2000). (PMID: 10.1093/ptj/80.9.90410960938)
Chénier, F., Aissaoui, R., Gauthier, C. & Gagnon, D. H. Wheelchair pushrim kinetics measurement: A method to cancel inaccuracies due to pushrim weight and wheel camber. Med. Eng. Phys. 40, 75–86. https://doi.org/10.1016/j.medengphy.2016.12.002 (2017). (PMID: 10.1016/j.medengphy.2016.12.00227988329)
Diaper, N. J., & Goosey-Tolfrey, V. L. A Physiological Case Study of a Paralympic Wheelchair Tennis Player: Reflective Practise. Journal of Sports Science and Medicine, 8(2), 300–307. https://www.researchgate.net/publication/258035766_A_Physiological_Case_Study_of_a_Paralympic_Wheelchair_Tennis_Player_Reflective_Practise , (2009).
Mason, B. S., Lenton, J. P., & Goosey-tolfrey, V. L. (2015b). The physiological and biomechanical effects of forwards and reverse sports wheelchair propulsion, The Journal of Spinal Cord Medicine, 38(4).
Goosey-Tolfrey, V. L. & Kirk, J. H. Effect of push frequency and strategy variations on economy and perceived exertion during wheelchair propulsion. Eur. J. Appl. Physiol. 90(1–2), 154–158. https://doi.org/10.1007/s00421-003-0875-6 (2003). (PMID: 10.1007/s00421-003-0875-614504947)
Van Drongelen, S., Arnet, U., Veeger, D. J. H. E. J. & Van der Woude, L. H. V. Effect of workload setting on propulsion technique in handrim wheelchair propulsion. Med. Eng. Phys. 35(3), 283–288. https://doi.org/10.1016/j.medengphy.2012.04.017 (2013). (PMID: 10.1016/j.medengphy.2012.04.01722910103)
Zinoubi, B., Zbidi, S., Vandewalle, H., Chamari, K. & Driss, T. Relationships between rating of perceived exertion, heart rate and blood lactate during continuous and alternated-intensity cycling exercises. Biol. Sport 35(1), 29–37. https://doi.org/10.5114/biolsport.2018.70749 (2018). (PMID: 10.5114/biolsport.2018.7074930237659)
Groslambert, A. & Mahon, A. D. Perceived exertion: Influence of age and cognitive development. Sports Med. 36(11), 911–928. https://doi.org/10.2165/00007256-200636110-00001 (2006). (PMID: 10.2165/00007256-200636110-0000117052130)
Rio-Rodriguez, D., Fernandez, M., & Iglesias-Soler, E. Rate of perceived exertion as a measure of cardiovascular stress. IV NSCA International Conference, 9(25). https://www.researchgate.net/publication/263654570_Rate_of_perceived_exertion_as_a_measure_of_cardiovascular_stress . (2014).
Goosey-Tolfrey, V. L., Paulson, T. A. W., Tolfrey, K. & Eston, R. G. Prediction of peak oxygen uptake from differentiated ratings of perceived exertion during wheelchair propulsion in trained wheelchair sportspersons. Eur. J. Appl. Physiol. 114(6), 1251–1258. https://doi.org/10.1007/s00421-014-2850-9 (2014). (PMID: 10.1007/s00421-014-2850-924610244)
Slowik, J. S. et al. The influence of speed and grade on wheelchair propulsion hand pattern. Clin. Biomech. 30(9), 927–932 (2015). (PMID: 10.1016/j.clinbiomech.2015.07.007)
Sindall, P. et al. Wheelchair tennis matchplay demands: effect of player rank and result. Int. J. Sports Physiol. Perform. 8(1), 28–37 (2013). (PMID: 10.1123/ijspp.8.1.2822868894)
de Silva, C. M. A. F. et al. Wheelchair skill tests in wheelchair Basketball: A systematic review. PLoS one https://doi.org/10.1371/journal.pone.0276946F (2022). (PMID: 10.1371/journal.pone.0276946F365482419778559)
van der Slikke, R. M. A., Berger, M. A. M., Bregman, D. J. J. & Veeger, D. H. E. J. Wearable Wheelchair Mobility Performance Measurement in Basketball, Rugby, and Tennis: Lessons for Classification and Training. Sensors 20, 3518. https://doi.org/10.3390/s20123518 (2020). (PMID: 10.3390/s20123518325759157349814)
Rietveld, T. et al. Wheelchair mobility performance of elite wheelchair tennis players during four field tests: Inter-trial reliability and construct validity. PLoS One https://doi.org/10.1371/journal.pone.021751 (2019). (PMID: 10.1371/journal.pone.021751311701866553740)
Santos, S. da S., Krishnan, C., Alonso, A. C., & Greve, J. M. D. Trunk Function Correlates Positively with Wheelchair Basketball Player Classification. American Journal of Physical Medicine & Rehabilitation, 96(2), 101–108. (2017).
Starrs, P., Chohan, A., Fewtrell, D., Richards, J. & Selfe, J. Biomechanical differences between experienced and inexperienced wheelchair users during sport. Prosthetics Orthot. Intern. 36(3), 324–331. https://doi.org/10.1177/0309364612448807 (2012). (PMID: 10.1177/0309364612448807)
Goosey-Tolfrey, V. L. & Moss, A. D. Wheelchair Velocity of Tennis Players during Propulsion with and Without the Use of Racquets. Adap. Phys. Activity Q. 22(3), 291–301. https://doi.org/10.1123/apaq.22.3.291 (2005). (PMID: 10.1123/apaq.22.3.291)
Koopman, J., Berger, M., Hoekstra, A. & de Groot, S. Exploring different technical solutions of the interface between the hand, racket and the rim in wheelchair tennis. Proc. Eng. 147, 484–489. https://doi.org/10.1016/j.proeng.2016.06.225 (2016). (PMID: 10.1016/j.proeng.2016.06.225)
Freitas, J. P. et al. Effect of inspiratory muscle training on pulmonary function, respiratory muscle strength, aerobic performance, sports skills, and quality of life in wheelchair rugby athletes. J. Bodywork Mov. Ther. 40, 360–365. https://doi.org/10.1016/j.jbmt.2024.04.049 (2024). (PMID: 10.1016/j.jbmt.2024.04.049)
Sinclair, J., & Andrews, S. The effect of Rating of Perceived Exertion (RPE) on the exercise-mood relationship. Journal of Sports Sciences, S86. https://www.researchgate.net/publication/235899365_The_effect_of_Rating_of_Perceived_Exertion_RPE_on_the_exercise-mood_relationship . (2011).
Van der Slikke, R. M. A., Berger, M. A. M., Bregman, D. J. J. & Veeger, H. E. J. From big data to rich data: The key features of athlete wheelchair mobility performance. J. Biomech. 49(14), 3340–3346. https://doi.org/10.1016/j.jbiomech.2016.08.022 (2016). (PMID: 10.1016/j.jbiomech.2016.08.02227612973)
R. Hasegawa, A. Uchiyama and T. Higashino Maneuver Classification in Wheelchair Basketball Using Inertial Sensors, Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU), Kathmandu, Nepal, https://doi.org/10.23919/ICMU48249.2019.9006654 . (2019).
No Comments.