H 2 -driven xylitol production in Cupriavidus necator H16.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101139812 Publication Model: Electronic Cited Medium: Internet ISSN: 1475-2859 (Electronic) Linking ISSN: 14752859 NLM ISO Abbreviation: Microb Cell Fact Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2002-
    • Subject Terms:
    • Abstract:
      Background: Biocatalysis offers a potentially greener alternative to chemical processes. For biocatalytic systems requiring cofactor recycling, hydrogen emerges as an attractive reducing agent. Hydrogen is attractive because all the electrons can be fully transferred to the product, and it can be efficiently produced from water using renewable electricity. In this article, resting cells of Cupriavidus necator H16 harboring a NAD-dependent hydrogenase were employed for cofactor recycling to reduce D-xylose to xylitol, a commonly used sweetener. To enable this bioconversion, D-xylose reductase from Scheffersomyces stipitis was heterologously expressed in C. necator.
      Results: D-xylose reductase was successfully expressed in C. necator, enabling almost complete bioconversion of 30 g/L of D-xylose into xylitol. It was found that over 90% of the energy and protons derived from hydrogen were spent for the bioconversion, demonstrating the efficiency of the system. The highest xylitol productivity reached was 0.7 g/L/h. Additionally, the same chassis efficiently produced L-arabitol and D-ribitol from L-arabinose and D-ribose, respectively.
      Conclusions: This study highlights the efficient utilization of renewable hydrogen as a reducing agent to power cofactor recycling. Hydrogen-oxidizing bacteria, such as C. necator, can be promising hosts for performing hydrogen-driven biocatalysis.
      Competing Interests: Declarations. Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s).)
    • References:
      Wang X, Saba T, Yiu HHP, Howe RF, Anderson JA, Shi J. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem. 2017;2:621. https://doi.org/10.1016/j.chempr.2017.04.009 . (PMID: 10.1016/j.chempr.2017.04.009)
      van der Donk WA, Zhao H. Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol. 2003. https://doi.org/10.1016/s0958-1669(03)00094-6 . (PMID: 10.1016/s0958-1669(03)00094-614662386)
      Stöckl M, Claassens NJ, Lindner SN, Klemm E, Holtmann D. Coupling electrochemical CO 2 reduction to microbial product generation-identification of the gaps and opportunities. Curr Opin Biotechnol. 2022;74:154. https://doi.org/10.1016/j.copbio.2021.11.007 . (PMID: 10.1016/j.copbio.2021.11.00734920211)
      Lubitz W, Ogata H, Rudiger O, Reijerse E. Hydrogenases. Chem Rev. 2014. https://doi.org/10.1021/cr4005814 . (PMID: 10.1021/cr400581424655035)
      Lenz O, Lauterbach L, Frielingsdorf S, Friedrich B. Oxygen-tolerant hydrogenases and their biotechnological potential. In: Rögner M, editor. Biohydrogen. Berlin: Walter de Gruyter GmbH; 2015.
      Jugder BE, Chen Z, Ping DT, Lebhar H, Welch J, Marquis CP. An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture. Microb Cell Fact. 2015;14:42. https://doi.org/10.1186/s12934-015-0226-4 . (PMID: 10.1186/s12934-015-0226-4258806634377017)
      Cramm R. Genomic view of energy metabolism in Ralstonia eutropha H16. J Mol Microbiol Biotechnol. 2009;16:38. https://doi.org/10.1159/000142893 . (PMID: 10.1159/00014289318957861)
      Holzer AK, Hiebler K, Mutti FG, Simon RC, Lauterbach L, Lenz O, et al. Asymmetric biocatalytic amination of ketones at the expense of NH 3 and molecular hydrogen. Org Lett. 2015. https://doi.org/10.1021/acs.orglett.5b01154 . (PMID: 10.1021/acs.orglett.5b0115425946312)
      Ratzka J, Lauterbach L, Lenz O, Ansorge-Schumacher MB. Systematic evaluation of the dihydrogen-oxidising and NAD + -reducing soluble [NiFe]-hydrogenase from Ralstonia eutropha H16 as a cofactor regeneration catalyst. Biocatal Biotransform. 2011. https://doi.org/10.3109/10242422.2011.615393 . (PMID: 10.3109/10242422.2011.615393)
      Al-Shameri A, Willot SJ, Paul CE, Hollmann F, Lauterbach L. H 2 as a fuel for flavin- and H 2 O 2 -dependent biocatalytic reactions. Chem Commun. 2020. https://doi.org/10.1039/d0cc03229h . (PMID: 10.1039/d0cc03229h)
      Cha J, Bak H, Kwon I. Hydrogen-fueled CO 2 reduction using oxygen-tolerant oxidoreductases. Front Bioeng Biotechnol. 2022. https://doi.org/10.3389/fbioe.2022.1078164 . (PMID: 10.3389/fbioe.2022.107816436686231)
      Preissler J, Reeve HA, Zhu T, Nicholson J, Urata K, Lauterbach L, et al. Dihydrogen-driven NADPH recycling in imine reduction and P450‐catalyzed oxidations mediated by an engineered O 2 ‐tolerant hydrogenase. ChemCatChem. 2020. https://doi.org/10.1002/cctc.202000763 . (PMID: 10.1002/cctc.202000763)
      Lin B, Tao Y. Whole-cell biocatalysts by design. Microb Cell Fact. 2017. https://doi.org/10.1186/s12934-017-0724-7 . (PMID: 10.1186/s12934-017-0724-7291219375679332)
      Klibanov AM, Alberti BN, Zale SE. Enzymatic synthesis of formic acid from H 2 and CO 2 and production of hydrogen from formic acid. Biotechnol Bioeng. 1982. https://doi.org/10.1002/bit.260240104 . (PMID: 10.1002/bit.26024010418546315)
      Oda T, Oda K, Yamamoto H, Matsuyama A, Ishii M, Igarashi Y, et al. Hydrogen-driven asymmetric reduction of hydroxyacetone to (R)-1,2-propanediol by Ralstonia eutropha transformant expressing alcohol dehydrogenase from Kluyveromyces Lactis. Microb Cell Fact. 2013;12:2. https://doi.org/10.1186/1475-2859-12-2 . (PMID: 10.1186/1475-2859-12-2233053963552938)
      Assil-Companioni L, Schmidt S, Heidinger P, Schwab H, Kourist R. Hydrogen-driven cofactor regeneration for stereoselective whole-cell C=C bond reduction in Cupriavidus necator. Chemsuschem. 2019;12:2361. https://doi.org/10.1002/cssc.201900327 . (PMID: 10.1002/cssc.20190032730889304)
      da Silva S, Chandel A. D-Xylitol: fermentative production, application and commercialization. 1st ed. Heidelberg: Springer; 2012. (PMID: 10.1007/978-3-642-31887-0)
      Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, et al. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. Sustain Energy Fuels. 2022;6:29. https://doi.org/10.1039/d1se00927c . (PMID: 10.1039/d1se00927c)
      Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hägerdal B, Penttilä M, et al. Xylitol production by recombinant Saccharomyces cerevisiae. Nat Biotechnol. 1991. https://doi.org/10.1038/nbt1191-1090 . (PMID: 10.1038/nbt1191-1090)
      Nyyssölä A, Pihlajaniemi A, Palva A, von Weymarn N, Leisola M. Production of xylitol from D-xylose by recombinant Lactococcus lactis. J Biotechnol. 2005. https://doi.org/10.1016/j.jbiotec.2005.03.014 . (PMID: 10.1016/j.jbiotec.2005.03.01415916828)
      Cirino PC, Chin JW, Ingram LO. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng. 2006. https://doi.org/10.1002/bit.21082 . (PMID: 10.1002/bit.2108216838379)
      Sasaki M, Jojima T, Inui M, Yukawa H. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Biochem Biotechnol. 2010. https://doi.org/10.1007/s00253-009-2372-2 . (PMID: 10.1007/s00253-009-2372-219590985)
      Jin LQ, Xu W, Yang B, Liu ZQ, Zheng YG. Efficient biosynthesis of xylitol from xylose by coexpression of xylose reductase and glucose dehydrogenase in Escherichia coli. Appl Biochem Biotechnol. 2019. https://doi.org/10.1007/s12010-018-2878-0 . (PMID: 10.1007/s12010-018-2878-030680703)
      Julsing MK, Kuhn D, Schmid A, Buhler B. Resting cells of recombinant E. coli show high epoxidation yields on energy source and high sensitivity to product inhibition. Biotechnol Bioeng. 2012. https://doi.org/10.1002/bit.24404 . (PMID: 10.1002/bit.2440422170310)
      Lenz O, Lauterbach L, Frielingsdorf S. O 2 -tolerant [NiFe]-hydrogenases of Ralstonia eutropha H16: physiology, molecular biology, purification, and biochemical analysis. Methods Enzymol. 2018. https://doi.org/10.1016/bs.mie.2018.10.008 . (PMID: 10.1016/bs.mie.2018.10.00830509463)
      Atlas RM. Handbook of microbiological media. 4th ed. Washington DC: Taylor & Francis; 2010. (PMID: 10.1201/EBK1439804063)
      Collas F, Dronsella BB, Kubis A, Schann K, Binder S, Arto N, et al. Engineering the biological conversion of formate into crotonate in Cupriavidus necator. Metab Eng. 2023. https://doi.org/10.1016/j.ymben.2023.06.015 . (PMID: 10.1016/j.ymben.2023.06.01537414134)
      Lütte S, Pohlmann A, Zaychikov E, Schwartz E, Becher JR, Heumann H, et al. Autotrophic production of stable-isotope-labeled arginine in Ralstonia eutropha strain H16. Appl Environ Microbiol. 2012. https://doi.org/10.1128/AEM.01972-12 . (PMID: 10.1128/AEM.01972-12229410753485953)
      Lenz O, Friedrich B. A novel multicomponent regulatory system mediates H 2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci. 1998. https://doi.org/10.1073/pnas.95.21.12474 . (PMID: 10.1073/pnas.95.21.12474977051022855)
      Claassens NJ, Bordanaba-Florit G, Cotton CAR, De Maria A, Finger-Bou M, Friedeheim L, et al. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator. Metab Eng. 2020. https://doi.org/10.1016/j.ymben.2020.08.004 . (PMID: 10.1016/j.ymben.2020.08.00432805426)
      Xiong B, Li Z, Liu L, Zhao D, Zhang X, Bi C. Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. Biotechnol Biofuels. 2018. https://doi.org/10.1186/s13068-018-1170-4 . (PMID: 10.1186/s13068-018-1170-4299511166011247)
      Vajente M, Clerici R, Ballerstedt H, Blank LM, Schmidt S. Using Cupriavidus necator H16 to provide a roadmap for increasing electroporation efficiency in non-model bacteria. bioRxiv. 2024. https://doi.org/10.1101/2024.05.27.596136 . (PMID: 10.1101/2024.05.27.596136)
      Verduyn C, Van Kleef R, Frank J, Schreuder H, Van Dijken JP, Scheffers WA. Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J. 1985. https://doi.org/10.1042/bj2260669 . (PMID: 10.1042/bj226066939210141144764)
      Jang Y, Lee YJ, Gong G, Lee SM, Um Y, Kim KH, et al. Carbon dioxide valorization into resveratrol via lithoautotrophic fermentation using engineered Cupriavidus necator H16. Microb Cell Fact. 2024. https://doi.org/10.1186/s12934-024-02398-x . (PMID: 10.1186/s12934-024-02398-x3955057211569612)
      Tanaka K, Ishizaki A, Kanamaru T, Kawano T. Production of poly(D-3-hydroxybutyrate) from CO 2 , H 2 , and O 2 by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng. 1995. https://doi.org/10.1002/bit.260450312 . (PMID: 10.1002/bit.26045031218623414)
      Kwon SG, Park SW, Oh DK. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng. 2006. https://doi.org/10.1263/jbb.101.13 . (PMID: 10.1263/jbb.101.1316503285)
      Gruber S, Hagen J, Schwab H, Koefinger P. Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16. J Biotechnol. 2014. https://doi.org/10.1016/j.jbiotec.2014.06.030 . (PMID: 10.1016/j.jbiotec.2014.06.03025284803)
      Lonsdale TH, Lauterbach L, Honda Malca S, Nestl BM, Hauer B, Lenz O. H 2 -driven biotransformation of n-octane to 1-octanol by a recombinant Pseudomonas putida strain co-synthesizing an O 2 -tolerant hydrogenase and a P450 monooxygenase. Chem Commun. 2015. https://doi.org/10.1039/c5cc06078h . (PMID: 10.1039/c5cc06078h)
    • Grant Information:
      342124 Research Council of Finland
    • Contributed Indexing:
      Keywords: Cupriavidus necator; Ralstonia eutropha; Biotransformation; Cofactor recycling; Cofactor regeneration; Hydrogen-oxidizing bacteria
    • Accession Number:
      VCQ006KQ1E (Xylitol)
      7YNJ3PO35Z (Hydrogen)
      EC 1.1.1.21 (Aldehyde Reductase)
      A1TA934AKO (Xylose)
    • Publication Date:
      Date Created: 20241224 Date Completed: 20241224 Latest Revision: 20241224
    • Publication Date:
      20241224
    • Accession Number:
      10.1186/s12934-024-02615-7
    • Accession Number:
      39716207