Cellular Uptake of Tau Aggregates Triggers Disulfide Bond Formation in Four-Repeat Tau Monomers.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Chemical Society Country of Publication: United States NLM ID: 101525337 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1948-7193 (Electronic) Linking ISSN: 19487193 NLM ISO Abbreviation: ACS Chem Neurosci Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, D.C. : American Chemical Society
    • Subject Terms:
    • Abstract:
      Oxidative stress is an important driver of aging and has been linked to numerous neurodegenerative disorders, including Alzheimer's disease. A key pathological hallmark of Alzheimer's are filamentous inclusions made of the microtubule associated protein Tau. Based on alternative splicing, Tau protein can feature either three or four microtubule binding repeats. Distinctively, three-repeat Tau contains a single cysteine; four-repeat Tau contains two. Although there is evidence that the cysteines in pathological Tau filaments exist in the reduced form, very little is known about the alternative disulfide-bonded state. It is unclear whether it can exist nontransiently in the reducing environment of the cytosol. Such knowledge, however, is important as different redox states of Tau could modulate aggregation. To address this question, we transfected HEK293 cells expressing the P301S variant of four-repeat Tau with fibril seeds composed of compact, disulfide-bonded Tau monomers. In vitro, these fibrils are observed to recruit only compact Tau, but not Tau in which the cysteines are reduced or replaced by alanines or serines. In line with this characteristic, the fibrils dissociate when treated with a reducing agent. When offered to HEK293 cells, variant Tau protein is recruited to the seeds forming intracellular fibrils with the same seeding properties as the in vitro counterparts. Markedly, the proteins in these fibrils have a compact, disulfide-bonded configuration and dissociate upon reduction. These findings reveal that uptake of exogeneous fibril seeds triggers oxidation of Tau monomers, modulating intracellular aggregation.
    • References:
      Cell. 2020 Feb 20;180(4):633-644.e12. (PMID: 32032505)
      Molecules. 2019 Apr 22;24(8):. (PMID: 31013638)
      Chem Rev. 2018 Feb 14;118(3):1169-1198. (PMID: 28699750)
      Adv Exp Med Biol. 2019;1184:305-325. (PMID: 32096046)
      J Mol Cell Biol. 2023 Mar 29;14(10):. (PMID: 36520068)
      J Biol Chem. 2016 Jun 3;291(23):12271-81. (PMID: 27080260)
      Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):E313-21. (PMID: 23269837)
      Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8463-7. (PMID: 7667312)
      Hum Mol Genet. 2021 Oct 13;30(21):1955-1967. (PMID: 34137825)
      Biochemistry. 2008 Oct 14;47(41):10841-51. (PMID: 18803399)
      Am J Pathol. 1994 Dec;145(6):1496-508. (PMID: 7992852)
      J Biol Chem. 2012 Mar 16;287(12):9591-600. (PMID: 22291015)
      Nat Commun. 2023 Feb 2;14(1):560. (PMID: 36732333)
      Nature. 2018 Sep;561(7721):137-140. (PMID: 30158706)
      Nature. 2017 Jul 13;547(7662):185-190. (PMID: 28678775)
      Biochim Biophys Acta. 2010 Jul;1804(7):1405-12. (PMID: 20399286)
      J Biol Chem. 2010 Nov 26;285(48):37920-6. (PMID: 20921227)
      Cell. 2023 Dec 21;186(26):5798-5811.e26. (PMID: 38134875)
      J Biol Chem. 2021 Sep;297(3):101021. (PMID: 34339733)
      Science. 2010 Feb 12;327(5967):869-72. (PMID: 20044542)
      Biochemistry. 2014 Sep 16;53(36):5804-9. (PMID: 25153692)
      Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22653-8. (PMID: 21156827)
      JAMA Neurol. 2019 Jan 1;76(1):101-108. (PMID: 30193298)
      J Biol Chem. 2018 Feb 16;293(7):2408-2421. (PMID: 29259137)
      FEBS J. 2021 Jan;288(1):127-141. (PMID: 32338825)
      Annu Rev Pathol. 2024 Jan 24;19:345-370. (PMID: 37832941)
      J Biol Chem. 2013 Apr 19;288(16):11024-37. (PMID: 23443659)
      Angew Chem Int Ed Engl. 2013 Mar 18;52(12):3511-5. (PMID: 23401175)
      Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10278-83. (PMID: 15240881)
      J Biol Chem. 2011 Aug 5;286(31):27236-46. (PMID: 21659525)
      Acta Neuropathol. 2004 Jun;107(6):504-8. (PMID: 15024583)
      J Neurochem. 1996 Sep;67(3):1183-90. (PMID: 8752125)
      Neuron. 1992 Jan;8(1):159-68. (PMID: 1530909)
      Biosci Rep. 2021 Aug 27;41(8):. (PMID: 34308969)
      Neuropathol Appl Neurobiol. 2015 Feb;41(1):3-23. (PMID: 25495175)
      Biochemistry. 2011 May 24;50(20):4330-6. (PMID: 21510682)
      Mol Biol Cell. 2022 Jul 1;33(8):ar67. (PMID: 35446108)
      Nature. 2021 Oct;598(7880):359-363. (PMID: 34588692)
      Anal Biochem. 1982 Oct;126(1):94-9. (PMID: 7181120)
      Methods Enzymol. 2006;413:122-39. (PMID: 17046394)
      Int J Mol Sci. 2020 Sep 01;21(17):. (PMID: 32882957)
      J Biol Chem. 2020 Jul 10;295(28):9676-9690. (PMID: 32467226)
      Hum Mol Genet. 2022 Aug 17;31(15):2498-2507. (PMID: 35165721)
      Antioxid Redox Signal. 2019 Apr 10;30(11):1450-1499. (PMID: 29634350)
      JACS Au. 2024 May 07;4(7):2451-2455. (PMID: 39055157)
      Sci Rep. 2018 Sep 14;8(1):13846. (PMID: 30218010)
      J Alzheimers Dis. 2017;57(4):1105-1121. (PMID: 28059794)
      Acta Neuropathol. 1991;81(6):591-6. (PMID: 1831952)
      EMBO J. 1993 Jan;12(1):365-70. (PMID: 7679073)
      J Clin Invest. 2007 Jan;117(1):236-45. (PMID: 17173140)
      J Neuropathol Exp Neurol. 1996 Feb;55(2):159-68. (PMID: 8786374)
      Cytoskeleton (Hoboken). 2024 Jan;81(1):95-102. (PMID: 38073060)
      J Biol Chem. 2023 Jul;299(7):104891. (PMID: 37286038)
      Mol Aspects Med. 2009 Feb-Apr;30(1-2):1-12. (PMID: 18796312)
      Free Radic Biol Med. 2024 Aug 20;221:261-272. (PMID: 38815773)
      Acta Neuropathol. 2016 Feb;131(2):267-280. (PMID: 26538150)
      Eur J Neurosci. 2007 May;25(10):3020-9. (PMID: 17561815)
      J Biol Chem. 2004 May 21;279(21):21749-58. (PMID: 15031298)
      Nature. 2024 Jan;625(7993):119-125. (PMID: 38030728)
      Prog Neurobiol. 2019 Sep;180:101644. (PMID: 31238088)
      Sci Rep. 2021 Jun 21;11(1):12946. (PMID: 34155306)
      Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16419-24. (PMID: 15534200)
      Nature. 2020 Apr;580(7802):283-287. (PMID: 32050258)
      J Biol Chem. 2000 Jul 7;275(27):20346-54. (PMID: 10751410)
      Biochemistry. 2002 Dec 17;41(50):14885-96. (PMID: 12475237)
      J Biol Chem. 2018 Nov 9;293(45):17336-17348. (PMID: 30242125)
      Nature. 2019 Apr;568(7752):420-423. (PMID: 30894745)
      Protein Sci. 2018 Nov;27(11):1901-1909. (PMID: 30125425)
      Biochim Biophys Acta. 2014 Aug;1844(8):1335-43. (PMID: 24657586)
      Proc Natl Acad Sci U S A. 1988 Jul;85(13):4884-8. (PMID: 2455299)
      Annu Rev Pathol. 2019 Jan 24;14:239-261. (PMID: 30355155)
      Nature. 1996 Oct 10;383(6600):550-3. (PMID: 8849730)
      J Chem Inf Model. 2024 Oct 28;64(20):8024-8033. (PMID: 39382320)
      J Biol Chem. 1988 Nov 25;263(33):17205-8. (PMID: 3053703)
    • Grant Information:
      RF1 AG061566 United States AG NIA NIH HHS
    • Contributed Indexing:
      Keywords: Alzheimer’s disease; Tau protein; aggregation; amyloid; conformation; disulfide; fibril; redox switch; seeding barrier; thiol
    • Accession Number:
      0 (tau Proteins)
      0 (Disulfides)
      0 (Protein Aggregates)
      0 (MAPT protein, human)
    • Publication Date:
      Date Created: 20241223 Date Completed: 20250115 Latest Revision: 20250120
    • Publication Date:
      20250120
    • Accession Number:
      PMC11740991
    • Accession Number:
      10.1021/acschemneuro.4c00607
    • Accession Number:
      39714208