Effects of individually calibrated white and pink noise vestibular stimulation on standing balance of young healthy adults.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0043312 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-1106 (Electronic) Linking ISSN: 00144819 NLM ISO Abbreviation: Exp Brain Res Subsets: MEDLINE
    • Publication Information:
      Original Publication: Berlin : Springer Verlag
    • Subject Terms:
    • Abstract:
      Imperceptible noisy galvanic vestibular stimulation (nGVS) improves standing balance due to the presence of stochastic resonance (SR). There is, however, a lack of consensus regarding the optimal levels and type of noise used to elicit SR like dynamics. We aimed to confirm the presence of SR behavior in the vestibular system of young healthy adults by examining postural responses to increasing amplitudes of white and pink noise stimulation scaled to individual cutaneous perceptual threshold. Forty (40) healthy young participants (19 males, 25.1 ± 5.6 years) were randomly divided into a group that received nGVS with white (WHITE group) or pink noise (PINK group). Participants performed a cutaneous perceptual threshold detection task followed by 8 trials of quiet standing and eyes closure (60s) with nGVS applied during the last 30s. Balance stabilization was quantified in the ratio of the stimulus versus pre-stimulus Centre of Pressure (CoP) 90% ellipse area, Root Mean Square (RMS) and mean velocity. Cutaneous perceptual threshold was similar across groups. Group analysis confirmed that the mean CoP velocity increased across nGVS intensities, particularly for the PINK group while the other two variables remained unchanged. Single subject analysis indicated that 55% of WHITE and 30% of PINK group participants showed an SR-like response judged by three experts. Results are puzzling with respect to the presence of SR-like response dynamics in young healthy adults and highlight the need for further research using individual calibrated stimulus intensities. White noise seems more effective than pink noise in revealing an SR-like response to nGVS.
      Competing Interests: Declarations. Competing interests: The authors declare that they have no conflict of financial or non-financial interests.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Angelaki DE, Cullen KE (2008) Vestibular system: The many facets of a multimodal sense. Annu Rev Neurosci 31:125–150. https://doi.org/10.1146/annurev.neuro.31.060407.125555. (PMID: 10.1146/annurev.neuro.31.060407.12555518338968)
      Assländer L, Giboin LS, Gruber M et al (2021) No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults. Sci Rep 11:1–10. https://doi.org/10.1038/s41598-021-91808-w. (PMID: 10.1038/s41598-021-91808-w)
      Day BL, Fitzpatrick RC (2005) The vestibular system. Curr Biol 15:583–586. https://doi.org/10.1016/j.cub.2005.07.053. (PMID: 10.1016/j.cub.2005.07.053)
      Ertl M, Klimek M, Boegle R et al (2018) Vestibular perception thresholds tested by galvanic vestibular stimulation. J Neurol 265:54–56. (PMID: 10.1007/s00415-018-8808-929508132)
      Fitzpatrick RC, Day BL, Forbes PA et al (2015) Probing the human vestibular system with galvanic stimulation Neural Control of Movement Probing the human vestibular system with galvanic stimulation. 2301–2316. https://doi.org/10.1152/japplphysiol.00008.2004.
      Fritz CO, Morris PE, Richler JJ (2012) Effect size estimates: Current use, calculations, and interpretation. J Exp Psychol Gen 141:2–18. (PMID: 10.1037/a002433821823805)
      Fujimoto C, Yamamoto Y, Kamogashira T et al (2016) Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep 6:1–8. https://doi.org/10.1038/srep37575. (PMID: 10.1038/srep37575)
      Fujimoto C, Egami N, Kawahara T et al (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol. https://doi.org/10.3389/fneur.2018.00900. (PMID: 10.3389/fneur.2018.00900305597146287371)
      Galvan-Garza RC, Clark TK, Mulavara AP, Oman CM (2018) Exhibition of stochastic resonance in vestibular tilt motion perception. Brain Stimul 11:716–722. https://doi.org/10.1016/j.brs.2018.03.017. (PMID: 10.1016/j.brs.2018.03.01729656906)
      Gammaitoni L, Jung P, Marchesoni F (1998) Stochastic resonance.
      Gensberger KD, Kaufmann AK, Dietrich H et al (2016) Galvanic vestibular stimulation: Cellular substrates and response patterns of neurons in the vestibulo-ocular network. J Neurosci 36:9097–9110. https://doi.org/10.1523/JNEUROSCI.4239-15.2016. (PMID: 10.1523/JNEUROSCI.4239-15.2016275814526601907)
      Goel R, Rosenberg MJ, Cohen HS et al (2019) Calibrating balance perturbation using electrical stimulation of the vestibular system. J Neurosci Methods 311:193–199. https://doi.org/10.1016/j.jneumeth.2018.10.012. (PMID: 10.1016/j.jneumeth.2018.10.01230339880)
      Hannan KB, Todd MK, Pearson NJ et al (2021a) Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking. Sci Rep 11:1–12. https://doi.org/10.1038/s41598-021-87485-4. (PMID: 10.1038/s41598-021-87485-4)
      Hannan KB, Todd MK, Pearson NJ et al (2021b) Absence of Nonlinear Coupling Between Electric Vestibular Stimulation and Evoked Forces During Standing Balance. Front Hum Neurosci 15:1–7. https://doi.org/10.3389/fnhum.2021.631782. (PMID: 10.3389/fnhum.2021.631782)
      Hlavacka F (2015) The visual feedback gain influence upon the regulation of the upright posture in man.
      Inukai Y, Masaki M, Otsuru N et al (2018) Effect of noisy galvanic vestibular stimulation in community-dwelling elderly people: A randomised controlled trial. J Neuroeng Rehabil 15:1–7. https://doi.org/10.1186/s12984-018-0407-6. (PMID: 10.1186/s12984-018-0407-6)
      Iwasaki S, Yamamoto Y, Togo F et al (2014) Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 82:969–975. https://doi.org/10.1212/WNL.0000000000000215. (PMID: 10.1212/WNL.000000000000021524532279)
      Jahn K, Naeßl A, Schneider E et al (2003) Inverse U-shaped curve for age dependency of torsional eye movement responses to galvanic vestibular stimulation. Brain 126:1579–1589. https://doi.org/10.1093/brain/awg163. (PMID: 10.1093/brain/awg16312805121)
      Kim DJ, Yogendrakumar V, Chiang J et al (2013) Noisy Galvanic Vestibular Stimulation Modulates the Amplitude of EEG Synchrony Patterns. PLoS ONE. https://doi.org/10.1371/journal.pone.0069055. (PMID: 10.1371/journal.pone.0069055243919603877277)
      Kwan A, Forbes PA, Mitchell DE et al (2019) Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat Commun doi. https://doi.org/10.1038/s41467-019-09738-1. (PMID: 10.1038/s41467-019-09738-1)
      McHugh ML (2012) Lessons in biostatistics interrater reliability: the kappa statistic. Biochem Med 22:276–282. (PMID: 10.11613/BM.2012.031)
      Mikhail Y, Charron J, Mac-Thiong JM, Barthelemy D (2021) Assessing head acceleration to identify a motor threshold to galvanic vestibular stimulation. J Neurophysiol 125:2191–2205. https://doi.org/10.1152/JN.00254.2020. (PMID: 10.1152/JN.00254.202033881904)
      Moriyama H, Itoh M, Shimada K, Otsuka N (2007) Morphometric analysis of fibers of the human vestibular nerve: Sex differences. Eur Arch Oto-Rhino-Laryngology 264:471–475. https://doi.org/10.1007/s00405-006-0197-5. (PMID: 10.1007/s00405-006-0197-5)
      Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: A tutorial and review of application. Clin Neurophysiol 115:267–281. https://doi.org/10.1016/j.clinph.2003.09.014. (PMID: 10.1016/j.clinph.2003.09.01414744566)
      Mulavara AP, Fiedler MJ, Kofman IS et al (2011) Improving balance function using vestibular stochastic resonance: Optimizing stimulus characteristics. Exp Brain Res 210:303–312. https://doi.org/10.1007/s00221-011-2633-z. (PMID: 10.1007/s00221-011-2633-z21442221)
      Mulavara AP, Kofman IS, De Dios YE et al (2015) Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front Syst Neurosci 9:1–14. https://doi.org/10.3389/fnsys.2015.00117. (PMID: 10.3389/fnsys.2015.00117)
      Nguyen TT, Kang JJ, Oh SY (2022) Thresholds for vestibular and cutaneous perception and oculomotor response induced by galvanic vestibular stimulation. Front Neurol. https://doi.org/10.3389/fneur.2022.955088. (PMID: 10.3389/fneur.2022.955088367124569669308)
      Nooristani M, Maheu M, Houde MS et al (2019) Questioning the lasting effect of galvanic vestibular stimulation on postural control. PLoS ONE 14:1–7. https://doi.org/10.1371/journal.pone.0224619. (PMID: 10.1371/journal.pone.0224619)
      Nozaki D, Collins JJ, Yamamoto Y (1999) Mechanism of stochastic resonance enhancement in neuronal models driven by [formula presented] noise. Phys Rev E - Stat Physics, Plasmas, Fluids. Relat Interdiscip Top 60:4637–4644. https://doi.org/10.1103/PhysRevE.60.4637. (PMID: 10.1103/PhysRevE.60.4637)
      Piccolo C, Bakkum A, Marigold DS (2020) Subthreshold stochastic vestibular stimulation affects balance-challenged standing and walking. PLoS ONE 15:1–16. https://doi.org/10.1371/journal.pone.0231334. (PMID: 10.1371/journal.pone.0231334)
      Pinto A (2021) Pink noise amplifies stochastic resonance in neural circuits. Eng Res Express. https://doi.org/10.1088/2631-8695/ab8442. (PMID: 10.1088/2631-8695/ab8442)
      Rice D (2021) (Unpublished Thesis) No evidence of stochastic resonance in postural sway response to noisy galvanic vestibular stimulation in healthy young adults. https://digitalcommons.usu.edu/gradreports/1579.
      Sadeghi SG, Chacron MJ, Taylor MC, Cullen KE (2007) Neural variability, detection thresholds, and information transmission in the vestibular system. J Neurosci 27:771–781. https://doi.org/10.1523/JNEUROSCI.4690-06.2007. (PMID: 10.1523/JNEUROSCI.4690-06.2007172514165053814)
      Schniepp R, Boerner JC, Decker J et al (2018) Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol 265:57–62. https://doi.org/10.1007/s00415-018-8814-y. (PMID: 10.1007/s00415-018-8814-y29508134)
      Soma R, Nozaki D, Kwak S, Yamamoto Y (2003) [Formula presented] Noise Outperforms White Noise in Sensitizing Baroreflex Function in the Human Brain. Phys Rev Lett 91:1–4. https://doi.org/10.1103/PhysRevLett.91.078101. (PMID: 10.1103/PhysRevLett.91.078101)
      Utz KS, Dimova V, Oppenländer K, Kerkhoff G (2010) Electrified minds: Transcranial direct current stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology-A review of current data and future implications. Neuropsychologia 48:2789–2810. (PMID: 10.1016/j.neuropsychologia.2010.06.00220542047)
      Wuehr M, Nusser E, Krafczyk S et al (2016) Noise-Enhanced Vestibular Input Improves Dynamic Walking Stability in Healthy Subjects. Brain Stimul 9:109–116. https://doi.org/10.1016/j.brs.2015.08.017. (PMID: 10.1016/j.brs.2015.08.01726422129)
      Wuehr M, Boerner JC, Pradhan C et al (2018) Stochastic resonance in the human vestibular system – Noise-induced facilitation of vestibulospinal reflexes. Brain Stimul 11:261–263. https://doi.org/10.1016/j.brs.2017.10.016. (PMID: 10.1016/j.brs.2017.10.01629100928)
      Wuehr M, Schmidmeier F, Katzdobler S et al (2022) Effects of Low-Intensity Vestibular Noise Stimulation on Postural Instability in Patients with Parkinson’s Disease. J Parkinsons Dis 12:1611–1618. https://doi.org/10.3233/JPD-213127. (PMID: 10.3233/JPD-21312735491798)
      Wuehr M, Eder J, Kellerer S et al (2023a) Mechanisms underlying treatment effects of vestibular noise stimulation on postural instability in patients with bilateral vestibulopathy. J Neurol. https://doi.org/10.1007/s00415-023-12085-3. (PMID: 10.1007/s00415-023-12085-33797363510896912)
      Wuehr M, Eder J, Kellerer S et al (2023b) Mechanisms underlying treatment effects of vestibular noise stimulation on postural instability in patients with bilateral vestibulopathy. J Neurol. https://doi.org/10.1007/s00415-023-12085-3. (PMID: 10.1007/s00415-023-12085-33797363510896912)
      Wuehr M, Peto D, Fietzek UM et al (2024) Low-intensity vestibular noise stimulation improves postural symptoms in progressive supranuclear palsy. J Neurol 271:4577–4586. https://doi.org/10.1007/s00415-024-12419-9. (PMID: 10.1007/s00415-024-12419-93872232811233287)
      Yamagata M, Okada S, Tsujioka Y et al (2022) Effects of subthreshold electrical stimulation with white noise, pink noise, and chaotic signals on postural control during quiet standing. Gait Posture 94:39–44. https://doi.org/10.1016/j.gaitpost.2022.02.023. (PMID: 10.1016/j.gaitpost.2022.02.02335240552)
      Yamamoto Y, Struzik ZR, Soma R, Ohashi K (2005) Noisy Vestibular Stimulation Improves Autonomic and Motor Responsiveness in Central Neurodegenerative Disorders. 1:175–181. https://doi.org/10.1002/ana.20574.
      Yu XJ, Dickman JD, DeAngelis GC, Angelaki DE (2015) Neuronal thresholds and choice-related activity of otolith afferent fibers during heading perception. Proc Natl Acad Sci U S A 112:6467–6472. https://doi.org/10.1073/pnas.1507402112. (PMID: 10.1073/pnas.1507402112259413584443306)
    • Contributed Indexing:
      Keywords: Balance; Colored noise; Cutaneous threshold; Stochastic resonance; Vestibular stimulation
    • Publication Date:
      Date Created: 20241222 Date Completed: 20241222 Latest Revision: 20241223
    • Publication Date:
      20241224
    • Accession Number:
      10.1007/s00221-024-06979-5
    • Accession Number:
      39710745