Menu
×
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
Closed
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
Closed
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Exercise training alleviates neuronal apoptosis and re-establishes mitochondrial quality control after cerebral ischemia by increasing SIRT3 expression.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Wu W;Wu W;Wu W;Wu W;Wu W; Wei Z; Wei Z; Wu Z; Wu Z; Wu Z; Wu Z; Wu Z; Chen J; Chen J; Liu J; Liu J; Liu J; Liu J; Liu J; Chen M; Chen M; Chen M; Chen M; Chen M; Yuan J; Yuan J; Yuan J; Yuan J; Yuan J; Zheng Z; Zheng Z; Zheng Z; Zheng Z; Zheng Z; Zhao Z; Zhao Z; Zhao Z; Zhao Z; Zhao Z; Lin Q; Lin Q; Lin Q; Lin Q; Lin Q; Liu N; Liu N; Liu N; Liu N; Liu N; Chen H; Chen H; Chen H; Chen H
- Source:
Cell biology and toxicology [Cell Biol Toxicol] 2024 Dec 21; Vol. 41 (1), pp. 10. Date of Electronic Publication: 2024 Dec 21.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Country of Publication: Switzerland NLM ID: 8506639 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-6822 (Electronic) Linking ISSN: 07422091 NLM ISO Abbreviation: Cell Biol Toxicol Subsets: MEDLINE
- Publication Information: Publication: [Cham] : Springer
Original Publication: Princeton, N.J. : Princeton Scientific Publishers, c1984- - Subject Terms: Sirtuin 3*/metabolism ; Sirtuin 3*/genetics ; Apoptosis* ; Brain Ischemia*/metabolism ; Mitochondria*/metabolism ; Physical Conditioning, Animal*/physiology ; Neurons*/metabolism ; Neurons*/pathology ; Rats, Sprague-Dawley*; Animals ; Male ; Rats ; Mitophagy/physiology ; Mitochondrial Dynamics/physiology ; Sirtuins
- Abstract: Existing evidence indicates that exercise training can enhance neural function by regulating mitochondrial quality control (MQC), which can be impaired by cerebral ischemia, and that sirtuin-3 (SIRT3), a protein localized in mitochondria, is crucial in maintaining mitochondrial functions. However, the relationship among exercise training, SIRT3, and MQC after cerebral ischemia remains obscure. This study attempted to elucidate the relationship among exercise training, SIRT3 and MQC after cerebral ischemia in rats. Male adult SD rats received tMCAO after the transfection of adeno-associated virus encoding either sirtuin-3 (AAV-SIRT3) or SIRT3 knockdown (AAV-sh-SIRT3) into the ipsilateral striata and cortex. Subsequently, the animals were randomly selected for exercise training. The index changes were measured by transmission electron microscopy, Western blot analysis, nuclear magnetic resonance imaging, TUNEL staining, and immunofluorescence staining, etc. The results revealed that after cerebral ischemia, exercise training increased SIRT3 expression, significantly improved neural function, alleviated infarct volume and neuronal apoptosis, maintained the mitochondrial structural integrity, and re-established MQC. The latter promoted mitochondrial biogenesis, balanced mitochondrial fission/fusion, and enhanced mitophagy. These favorable benefits were reversed after SIRT3 interference. In addition, a cellular OGD/R model showed that the increased SIRT3 expression alleviates neuronal apoptosis and re-establishes mitochondrial quality control by activating the β-catenin pathway. These findings suggest that exercise training may optimize mitochondrial quality control by increasing the expression of SIRT3, thereby improving neural functions after cerebral ischemia, which illuminates the mechanism underlying the exercise training-conferred neural benefits and indicates SIRT3 as a therapeutic strategy for brain ischemia.
Competing Interests: Declarations. Competing Interests: The authors declare no competing interests. Ethical Approval: The protocols adhered to the National Institute of Health guidelines (NIH Publications NO. 80–23, revised 1996). Approval for this experiment was obtained from the Institutional Animal Care and Use Committee (IACUC) of Fujian Medical University, Fujian, China [Approval No. 20220603].
(© 2024. The Author(s).) - References: An H, Zhou B, Ji XM. Mitochondrial quality control in acute ischemic stroke. J Cereb Blood Flow Metab. 2021;41(12):3157–70. https://doi.org/10.1177/0271678x211046992 . (PMID: 10.1177/0271678x211046992345516098669286)
Andrabi SS, Parvez S, Tabassum H. Progesterone induces neuroprotection following reperfusion-promoted mitochondrial dysfunction after focal cerebral ischemia in rats. Dis Model Mech. 2017;10(6):787–96. https://doi.org/10.1242/dmm.025692 . (PMID: 10.1242/dmm.025692283639875482998)
Ansari A, Rahman MS, Saha SK, Saikot FK, Deep A, Kim KH. Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell. 2017;16(1):4–16. https://doi.org/10.1111/acel.12538 . (PMID: 10.1111/acel.1253827686535)
Anzell AR, Maizy R, Przyklenk K, Sanderson TH. Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury. Mol Neurobiol. 2018;55(3):2547–64. https://doi.org/10.1007/s12035-017-0503-9 . (PMID: 10.1007/s12035-017-0503-928401475)
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100. https://doi.org/10.1038/s41580-019-0173-8 . (PMID: 10.1038/s41580-019-0173-831636403)
Brazzelli M, Saunders DH, Greig CA, Mead GE. Physical fitness training for stroke patients. Cochrane Database Syst Rev. 2011;11:247. https://doi.org/10.1002/14651858.CD003316.pub4 . (PMID: 10.1002/14651858.CD003316.pub4)
Cai Y, Yang EY, Yao XH, et al. FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury. Redox Biol. 2021;38:15. https://doi.org/10.1016/j.redox.2020.101792 . (PMID: 10.1016/j.redox.2020.101792)
Campos JC, Bozi LHM, Krum B, et al. Exercise preserves physical fitness during aging through AMPK and mitochondrial dynamics. Proc Natl Acad Sci U S A. 2023;120(2):11. https://doi.org/10.1073/pnas.2204750120 . (PMID: 10.1073/pnas.2204750120)
Chang CY, Wu CC, Pan PH, et al. Tetramethylpyrazine alleviates mitochondrial abnormality in models of cerebral ischemia and oxygen/glucose deprivation Reoxygenation. Exp Neurol. 2023;367: 114468. https://doi.org/10.1016/j.expneurol.2023.114468 . (PMID: 10.1016/j.expneurol.2023.11446837307890)
Chen D, Zheng K, Wu H, et al. Lin28a attenuates cerebral ischemia/reperfusion injury through regulating Sirt3-induced autophagy. Brain Res Bull. 2021;170:39–48. (PMID: 10.1016/j.brainresbull.2021.01.02233548334)
Chen H, Liu J, Chen M, et al. SIRT3 facilitates mitochondrial structural repair and functional recovery in rats after ischemic stroke by promoting OPA1 expression and activity. Clin Nutr (Edinburgh, Scotland). 2024a;43(7):1816–31. https://doi.org/10.1016/j.clnu.2024.06.001 . (PMID: 10.1016/j.clnu.2024.06.001)
Chen M, Liu J, Wu W, et al. SIRT1 restores mitochondrial structure and function in rats by activating SIRT3 after cerebral ischemia/reperfusion injury. Cell Biol Toxicol. 2024b;40(1):31. https://doi.org/10.1007/s10565-024-09869-2 . (PMID: 10.1007/s10565-024-09869-23876777111106166)
Cheng J, Shen W, Jin L, et al. Treadmill exercise promotes neurogenesis and myelin repair via upregulating Wnt/β-catenin signaling pathways in the juvenile brain following focal cerebral ischemia/reperfusion. Int J Mol Med. 2020;45(5):1447–63. (PMID: 323237407138282)
Chuang CS, Chang JC, Cheng FC, Liu KH, Su HL, Liu CS. Modulation of mitochondrial dynamics by treadmill training to improve gait and mitochondrial deficiency in a rat model of Parkinson’s disease. Life Sci. 2017;191:236–44. https://doi.org/10.1016/j.lfs.2017.10.003 . (PMID: 10.1016/j.lfs.2017.10.00328986095)
Drake JC, Laker RC, Wilson RJ, Zhang M, Yan Z. Exercise-induced mitophagy in skeletal muscle occurs in the absence of stabilization of Pink1 on mitochondria. Cell Cycle. 2019;18(1):1–6. https://doi.org/10.1080/15384101.2018.1559556 . (PMID: 10.1080/15384101.2018.155955630558471)
Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20(10):795–820. https://doi.org/10.1016/s1474-4422(21)00252-0 . (PMID: 10.1016/s1474-4422(21)00252-0)
Feng JX, Lu C, Dai Q, Sheng JQ, Xu M. SIRT3 Facilitates Amniotic Fluid Stem Cells to Repair Diabetic Nephropathy Through Protecting Mitochondrial Homeostasis by Modulation of Mitophagy. Cell Physiol Biochem. 2018;46(4):1508–24. https://doi.org/10.1159/000489194 . (PMID: 10.1159/00048919429689547)
Fu WY, Liu Y, Yin H. Mitochondrial Dynamics: Biogenesis, Fission, Fusion, and Mitophagy in the Regulation of Stem Cell Behaviors. Stem Cells Int. 2019;2019:15. https://doi.org/10.1155/2019/9757201 . (PMID: 10.1155/2019/9757201)
Granata C, Jamnick NA, Bishop DJ. Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med. 2018;48(8):1809–28. https://doi.org/10.1007/s40279-018-0936-y . (PMID: 10.1007/s40279-018-0936-y29934848)
Guo T, Chen M, Liu J, et al. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia. J Transl Med. 2023;21(1):297. (PMID: 10.1186/s12967-023-04125-33713828310155168)
Hao Z, Yongchun L, Lihua C, et al. Sirt3 inhibits cerebral ischemia-reperfusion injury through normalizing Wnt/β-catenin pathway and blocking mitochondrial fission. Cell Stress Chaperones. 2018;23(5):1079–92. (PMID: 10.1007/s12192-018-0917-y)
He Z, Ning NY, Zhou QX, Khoshnam SE, Farzaneh M. Mitochondria as a therapeutic target for ischemic stroke. Free Radical Biol Med. 2020;146:45–58. https://doi.org/10.1016/j.freeradbiomed.2019.11.005 . (PMID: 10.1016/j.freeradbiomed.2019.11.005)
He MT, Kittur FS, Hung CY, et al. A Novel Plant-Produced Asialo-rhuEPO Protects Brain from Ischemic Damage Without Erythropoietic Action. Transl Stroke Res. 2022;13(2):338–54. https://doi.org/10.1007/s12975-021-00943-z . (PMID: 10.1007/s12975-021-00943-z34553324)
Hu YH, Zhan Q, Zhang HB, et al. Increased Susceptibility to Ischemic Brain Injury in Neuroplastin 65-Deficient Mice Likely via Glutamate Excitotoxicity. Front Cell Neurosci. 2017a;11:9. https://doi.org/10.3389/fncel.2017.00110 . (PMID: 10.3389/fncel.2017.00110)
Hu ZY, Li N, Chen BY, Gong ZK, Wang QH, Fan LG. Rehabilitation Nursing for Cerebral Stroke Patients within a Suitable Recovery Empty Period. Iran J Public Health. 2017b;46(2):180–5.
Hwang DJ, Koo JH, Kwon KC, et al. Neuroprotective effect of treadmill exercise possibly via regulation of lysosomal degradation molecules in mice with pharmacologically induced Parkinson’s disease. J Physiol Sci. 2018;68(5):707–16. https://doi.org/10.1007/s12576-017-0586-0 . (PMID: 10.1007/s12576-017-0586-029260454)
Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain. 2019;12(1):104. https://doi.org/10.1186/s13041-019-0525-5 . (PMID: 10.1186/s13041-019-0525-5318015536894260)
Jornayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010;47:69–84. https://doi.org/10.1042/bse0470069 . (PMID: 10.1042/bse047006920533901)
Larcher T, Lafoux A, Tesson L, et al. Characterization of Dystrophin Deficient Rats: A New Model for Duchenne Muscular Dystrophy. PLoS One. 2014;9(10):13. https://doi.org/10.1371/journal.pone.0110371 . (PMID: 10.1371/journal.pone.0110371)
Li H, Leung JCK, Yiu WH, et al. Tubular β-catenin alleviates mitochondrial dysfunction and cell death in acute kidney injury. Cell Death Dis. 2022;13(12):1061. https://doi.org/10.1038/s41419-022-05395-3 . (PMID: 10.1038/s41419-022-05395-3365394069768165)
Liang SX, Lin YJ, Lin BB, et al. Resting-state Functional Magnetic Resonance Imaging Analysis of Brain Functional Activity in Rats with Ischemic Stroke Treated by Electro-acupuncture. J Stroke Cerebrovasc Dis. 2017;26(9):1953–9. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.018 . (PMID: 10.1016/j.jstrokecerebrovasdis.2017.06.01828687422)
Marchetti B. Wnt/β-Catenin Signaling Pathway Governs a Full Program for Dopaminergic Neuron Survival, Neurorescue and Regeneration in the MPTP Mouse Model of Parkinson’s Disease. Int J Mol Sci. 2018;19(12):3743. https://doi.org/10.3390/ijms19123743 . (PMID: 10.3390/ijms19123743304772466321180)
Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189(2):211–21. https://doi.org/10.1083/jcb.200910140 . (PMID: 10.1083/jcb.200910140204041072856912)
Mouwei Z, Ronghua C, Hongbin C, et al. Netrin-1 Promotes Synaptic Formation and Axonal Regeneration via JNK1/c-Jun Pathway after the Middle Cerebral Artery Occlusion. Front Cell Neurosci. 2018;12:13. (PMID: 10.3389/fncel.2018.00013)
Muñoz A, Corrêa CL, Lopez-Lopez A, Costa-Besada MA, Diaz-Ruiz C, Labandeira-Garcia JL. Physical Exercise Improves Aging-Related Changes in Angiotensin, IGF-1, SIRT1, SIRT3, and VEGF in the Substantia Nigra. J Gerontol Ser A-Biol Sci Med Sci. 2018;73(12):1594–601. https://doi.org/10.1093/gerona/gly072 . (PMID: 10.1093/gerona/gly072)
Nogueira-Ferreira R, Ferreira R, Padrao AI, et al. One year of exercise training promotes distinct adaptations in right and left ventricle of female Sprague-Dawley rats. J Physiol Biochem. 2019;75(4):561–72. https://doi.org/10.1007/s13105-019-00705-4 . (PMID: 10.1007/s13105-019-00705-431620967)
Pan GY, Zhang HM, Zhu AQ, et al. Treadmill exercise attenuates cerebral ischaemic injury in rats by protecting mitochondrial function via enhancement of caveolin-1. Life Sci. 2021;264:10. https://doi.org/10.1016/j.lfs.2020.118634 . (PMID: 10.1016/j.lfs.2020.118634)
Park J, Kim J, Mikami T. Exercise-Induced Lactate Release Mediates Mitochondrial Biogenesis in the Hippocampus of Mice via Monocarboxylate Transporters. Front Physiol. 2021;12:14. https://doi.org/10.3389/fphys.2021.736905 . (PMID: 10.3389/fphys.2021.736905)
Perrino C, Gargiulo G, Pironti G, et al. Cardiovascular effects of treadmill exercise in physiological and pathological preclinical settings. Am J Physiol-Heart Circ Physiol. 2011;300(6):H1983–9. https://doi.org/10.1152/ajpheart.00784.2010 . (PMID: 10.1152/ajpheart.00784.201021490325)
Rezaee Z, Marandi SM, Alaei H, Esfarjani F, Feyzollahzadeh S. Effects of Preventive Treadmill Exercise on the Recovery of Metabolic and Mitochondrial Factors in the 6-Hydroxydopamine Rat Model of Parkinson’s Disease. Neurotox Res. 2019;35(4):908–17. https://doi.org/10.1007/s12640-019-0004-x . (PMID: 10.1007/s12640-019-0004-x30820889)
Salmina AB, Kharitonova EV, Gorina YV, et al. Blood-Brain Barrier and Neurovascular Unit In Vitro Models for Studying Mitochondria-Driven Molecular Mechanisms of Neurodegeneration. Int J Mol Sci. 2021;22(9):22. https://doi.org/10.3390/ijms22094661 . (PMID: 10.3390/ijms22094661)
Shahid M, Cobo ER, Chen LB, et al. Prototheca zopfii genotype II induces mitochondrial apoptosis in models of bovine mastitis. Sci Rep. 2020;10(1):10. https://doi.org/10.1038/s41598-020-57645-z . (PMID: 10.1038/s41598-020-57645-z)
Shen Z, Zheng YR, Wu JY, et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy. 2017;13(3):473–85. https://doi.org/10.1080/15548627.2016.1274596 . (PMID: 10.1080/15548627.2016.1274596281031185361599)
Song MY, Zhou Y, Fan X. Mitochondrial Quality and Quantity Control: Mitophagy Is a Potential Therapeutic Target for Ischemic Stroke. Mol Neurobiol. 2022;59(5):3110–23. https://doi.org/10.1007/s12035-022-02795-6 . (PMID: 10.1007/s12035-022-02795-635266113)
Sp N, Kang DY, Jo ES, et al. Tannic Acid Promotes TRAIL-Induced Extrinsic Apoptosis by Regulating Mitochondrial ROS in Human Embryonic Carcinoma Cells. Cells. 2020;9(2):17. https://doi.org/10.3390/cells9020282 . (PMID: 10.3390/cells9020282)
Stinear CM, Lang CE, Zeiler S, Byblow WD. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020;19(4):348–60. https://doi.org/10.1016/s1474-4422(19)30415-6 . (PMID: 10.1016/s1474-4422(19)30415-632004440)
Tang CY, Cai J, Yin XM, Weinberg JM, Venkatachalam MA, Dong Z. Mitochondrial quality control in kidney injury and repair. Nat Rev Nephrol. 2021;17(5):299–318. https://doi.org/10.1038/s41581-020-00369-0 . (PMID: 10.1038/s41581-020-00369-033235391)
Terashi T, Otsuka S, Takada S, et al. Neuroprotective effects of different frequency preconditioning exercise on neuronal apoptosis after focal brain ischemia in rats. Neurol Res. 2019;41(6):510–8. https://doi.org/10.1080/01616412.2019.1580458 . (PMID: 10.1080/01616412.2019.158045830822224)
van der Kooij MA, Ohl F, Arndt SS, Kavelaars A, van Bel F, Heijnen CJ. Mild neonatal hypoxia-ischemia induces long-term motor- and cognitive impairments in mice. Brain Behav Immun. 2010;24(5):850–6. https://doi.org/10.1016/j.bbi.2009.09.003 . (PMID: 10.1016/j.bbi.2009.09.00319748566)
Wang Z, Sun R, Wang G, et al. SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury. Redox Biol. 2020;28:101343. (PMID: 10.1016/j.redox.2019.10134331655428)
Wang Y, Guan X, Gao CL, et al. Medioresinol as a novel PGC-1α activator prevents pyroptosis of endothelial cells in ischemic stroke through PPARα-GOT1 axis. Pharmacol Res. 2021;169: 105640. https://doi.org/10.1016/j.phrs.2021.105640 . (PMID: 10.1016/j.phrs.2021.10564033915296)
Wu MM, Gu XP, Ma ZL. Mitochondrial Quality Control in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol. 2021;58(10):5253–71. https://doi.org/10.1007/s12035-021-02494-8 . (PMID: 10.1007/s12035-021-02494-834275087)
Xin T, Lu CZ. SirT3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. Aging-US. 2020;12(16):16224–37. https://doi.org/10.18632/aging.103644 . (PMID: 10.18632/aging.103644)
Yang X, Geng KY, Zhang YS, et al. Sirt3 deficiency impairs neurovascular recovery in ischemic stroke. CNS Neurosci Ther. 2018a;24(9):775–83. https://doi.org/10.1111/cns.12853 . (PMID: 10.1111/cns.12853297775786490148)
Yang Y, Zhang X, Ge HF, et al. Epothilone B Benefits Nigrostriatal Pathway Recovery by Promoting Microtubule Stabilization After Intracerebral Hemorrhage. J Am Heart Assoc. 2018b;7(2):21. https://doi.org/10.1161/jaha.117.007626 . (PMID: 10.1161/jaha.117.007626)
Yang XY, Feng P, Zhang XJ, et al. The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. Neuropharmacology. 2019;158:14. https://doi.org/10.1016/j.neuropharm.2019.107748 . (PMID: 10.1016/j.neuropharm.2019.107748)
Yang MX, He Y, Deng SX, et al. Mitochondrial Quality Control: A Pathophysiological Mechanism and Therapeutic Target for Stroke. Front Mol Neurosci. 2022;14:19. https://doi.org/10.3389/fnmol.2021.786099 . (PMID: 10.3389/fnmol.2021.786099)
Yingqiong X, Yan W, Guangyun W, et al. YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKCδ/Drp1-Mediated Excessive Mitochondrial Fission. Oxid Med Cell Longev. 2017;2017:1832093. (PMID: 10.1155/2017/1832093)
Yuan Y, Tian Y, Jiang H, et al. Mechanism of PGC-1α-mediated mitochondrial biogenesis in cerebral ischemia-reperfusion injury. Front Mol Neurosci. 2023;16:7. https://doi.org/10.3389/fnmol.2023.1224964 . (PMID: 10.3389/fnmol.2023.1224964)
Zhang Z, Sliter DA, Bleck CKE, Ding SZ. Fis1 deficiencies differentially affect mitochondrial quality in skeletal muscle. Mitochondrion. 2019;49:217–26. https://doi.org/10.1016/j.mito.2019.09.005 . (PMID: 10.1016/j.mito.2019.09.005315268917097820)
Zhang Q, Schwade M, Smith Y, Wood R, Young LF. Exercise-based interventions for post-stroke social participation: A systematic review and network meta-analysis. Int J Nurs Stud. 2020a;111:10. https://doi.org/10.1016/j.ijnurstu.2020.103738 . (PMID: 10.1016/j.ijnurstu.2020.103738)
Zhang Y, Cao MY, Wu YM, et al. Improvement in mitochondrial function underlies the effects of ANNAO tablets on attenuating cerebral ischemia-reperfusion injuries. J Ethnopharmacol. 2020b;246:10. https://doi.org/10.1016/j.jep.2019.112212 . (PMID: 10.1016/j.jep.2019.112212)
Zhang TWY, Xia Q, Tu Z, Sun J, Jing Q, Chen P, Zhao X. Propofol Mediated Protection of the Brain From Ischemia/Reperfusion Injury Through the Regulation of Microglial Connexin 43. Front Cell Dev Biol. 2021;9:1104.
Zhao DJ, Sun Y, Tan YZ, et al. Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice. Oxidative Med Cell Longev. 2018;2018:16. https://doi.org/10.1155/2018/4079041 . (PMID: 10.1155/2018/4079041)
Zheng K, Bai J, Li N, et al. Protective effects of sirtuin 3 on titanium particle-induced osteogenic inhibition by regulating the NLRP3 inflammasome via the GSK-3β/β-catenin signalling pathway. Bioact Mater. 2021;6(10):3343–57. https://doi.org/10.1016/j.bioactmat.2021.02.039 . (PMID: 10.1016/j.bioactmat.2021.02.039338174158005659)
Zheng M, Bai Y, Sun X, et al. Resveratrol Reestablishes Mitochondrial Quality Control in Myocardial Ischemia/Reperfusion Injury through Sirt1/Sirt3-Mfn2-Parkin-PGC-1α Pathway. Molecules (Basel, Switzerland). 2022;27(17):5545. https://doi.org/10.3390/molecules27175545 . (PMID: 10.3390/molecules2717554536080311)
Zheng YH, Li LY, Chen BW, et al. Chlorogenic acid exerts neuroprotective effect against hypoxia-ischemia brain injury in neonatal rats by activating Sirt1 to regulate the Nrf2-NF-κB signaling pathway. Cell Commun Signal. 2022b;20(1):20. https://doi.org/10.1186/s12964-022-00860-0 . (PMID: 10.1186/s12964-022-00860-0)
Zhong HH, Song R, Pang QN, et al. Propofol inhibits parthanatos via ROS-ER-calcium-mitochondria signal pathway in vivo and vitro. Cell Death Dis. 2018;9:14. https://doi.org/10.1038/s41419-018-0996-9 . (PMID: 10.1038/s41419-018-0996-9)
Zhou Y, Peng L, Li Y, Zhao Y. Silent information regulator 1 ameliorates oxidative stress injury via PGC-1α/PPARγ-Nrf2 pathway after ischemic stroke in rat. Brain Res Bull. 2022;178:37–48. (PMID: 10.1016/j.brainresbull.2021.11.00134774993) - Grant Information: No. 2023QH2026 Startup Fund for Scientific Research, Fujian Medical University; 2021Y9060 Joint Funds for the innovation of science and Technology, Fujian province; No. 2022XH026 Excellent Young Scholars Cultivation Project of Fujian Medical University Union Hospital; No. 81802225 National Natural Science Foundation of China
- Contributed Indexing: Keywords: Cerebral ischemia; Exercise training; Mitochondrial Quality Control (MQC); Neuronal apoptosis; SIRT3
- Accession Number: EC 3.5.1.- (Sirtuin 3)
0 (SIRT3 protein, rat)
EC 3.5.1.- (Sirtuins) - Publication Date: Date Created: 20241220 Date Completed: 20241220 Latest Revision: 20241220
- Publication Date: 20241222
- Accession Number: 10.1007/s10565-024-09957-3
- Accession Number: 39707047
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.