References: Ahrends, C., M. Woolrich, and D. Vidaurre. 2024. “Predicting Individual Traits From Models of Brain Dynamics Accurately and Reliably Using the Fisher Kernel.” eLife 13: RP95125.
Al Zoubi, O., C. Ki Wong, R. T. Kuplicki, et al. 2018. “Predicting Age From Brain EEG Signals—A Machine Learning Approach.” Frontiers in Aging Neuroscience 10: 184.
Borgwardt, K. M., A. Gretton, M. J. Rasch, H.‐P. Kriegel, B. Schölkopf, and A. J. Smola. 2006. “Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy.” Bioinformatics 22, no. 14: e49–e57.
Buzsáki, G., and A. Draguhn. 2004. “Neuronal Oscillations in Cortical Networks.” Science 304, no. 5679: 1926–1929.
Dimitriadis, S. I., and C. I. Salis. 2017. “Mining Time‐Resolved Functional Brain Graphs to an EEG‐Based Chronnectomic Brain Aged Index (CBAI).” Frontiers in Human Neuroscience 11: 423.
Dosenbach, N. U. F., B. Nardos, A. L. Cohen, et al. 2010. “Prediction of Individual Brain Maturity Using fMRI.” Science 329, no. 5997: 1358–1361.
Engemann, D. A., A. Mellot, R. Höchenberger, et al. 2022. “A Reusable Benchmark of Brain‐Age Prediction From M/EEG Resting‐State Signals.” NeuroImage 262: 119521.
Franke, K., and C. Gaser. 2019. “Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: What Insights Have We Gained?” Frontiers in Neurology 10: 789.
Fukumizu, K., L. Song, and A. Gretton. 2011. “Kernel Bayes' Rule.” In Advances in Neural Information Processing Systems, edited by J. Shawe‐Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, vol. 24. Red Hook, NY, USA: Curran Associates, Inc.
Gretton, A., K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. 2012. “A Kernel Two‐Sample Test.” Journal of Machine Learning Research 13, no. 1: 723–773.
Hägg, S., and J. Jylhävä. 2021. “Sex Differences in Biological Aging With a Focus on Human Studies.” eLife 10: e63425.
Haynes, J.‐D., and G. Rees. 2006. “Decoding Mental States From Brain Activity in Humans.” Nature Reviews Neuroscience 7, no. 7: 523–534.
Iyer, A. S., S. Jagarlapudi, and S. Sarawagi. 2014. “Maximum Mean Discrepancy for Class Ratio Estimation: Convergence Bounds and Kernel Selection.” In Proceedings of the 31st International Conference on Machine Learning, 530–538.
Khayretdinova, M., A. Shovkun, V. Degtyarev, A. Kiryasov, P. Pshonkovskaya, and I. Zakharov. 2022. “Predicting Age From Resting‐State Scalp EEG Signals With Deep Convolutional Neural Networks on TD‐Brain Dataset.” Frontiers in Aging Neuroscience 14: 1019869.
Kouw, W. M. 2018. “An Introduction to Domain Adaptation and Transfer Learning.” CoRR. https://doi.org/10.48550/arXiv.1812.11806.
Li, M., Y. Wang, C. Lopez‐Naranjo, et al. 2022. “Harmonized‐Multinational qEEG Norms (HarMNqEEG).” NeuroImage 256: 119190.
Liegeois, R., J. Li, R. Kong, et al. 2019. “Resting Brain Dynamics at Different Timescales Capture Distinct Aspects of Human Behavior.” Nature Communications 10, no. 1: 2317.
Møller, J. 1986. “Bartlett Adjustments for Structured Covariances.” Scandinavian Journal of Statistics 13: 1–15.
Rosenberg, M. D., E. S. Finn, D. Scheinost, et al. 2016. “A Neuromarker of Sustained Attention From Whole‐Brain Functional Connectivity.” Nature Neuroscience 19, no. 1: 165–171.
Sabbagh, D., P. Ablin, G. Varoquaux, A. Gramfort, and D. A. Engemann. 2019. “Manifold‐Regression to Predict From MEG/EEG Brain Signals Without Source Modeling.” In Advances in Neural Information Processing Systems, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché‐Buc, E. Fox, and R. Garnett, vol. 32. Red Hook, NY, USA: Curran Associates, Inc.
Saunders, C., A. Gammerman, and V. Vovk. 1998. “Ridge Regression Learning Algorithm in Dual Variables.” In Proceedings of the Fifteenth International Conference on Machine Learning, edited by J. Shavlik, 515–521. Morgan Kaufmann.
Smith, S. M., D. Vidaurre, F. Alfaro‐Almagro, T. E. Nichols, and K. L. Miller. 2019. “Estimation of Brain Age Delta From Brain Imaging.” NeuroImage 200: 528–539.
Smola, A., A. Gretton, L. Song, and B. Schölkopf. 2007. “A Hilbert Space Embedding for Distributions.” In Algorithmic Learning Theory, edited by M. Hutter, R. A. Servedio, and E. Takimoto, 13–31. Berlin, Heidelberg: Springer Berlin Heidelberg.
Sun, H., L. Paixao, J. T. Oliva, et al. 2019. “Brain Age From the Electroencephalogram of Sleep.” Neurobiology of Aging 74: 112–120.
Valdes‐Sosa, P. A., L. Galan‐Garcia, J. Bosch‐Bayard, et al. 2021. “The Cuban Human Brain Mapping Project, a Young and Middle Age Population‐Based EEG, MRI, and Cognition Dataset.” Scientific Data 8, no. 1: 45.
Vandenbosch, M. M. L. J. Z., D. van't Ent, D. I. Boomsma, A. P. Anokhin, and D. J. A. Smit. 2019. “EEG‐Based Age‐Prediction Models as Stable and Heritable Indicators of Brain Maturational Level in Children and Adolescents.” Human Brain Mapping 40, no. 6: 1919–1926.
Vidaurre, D., C. Bielza, and P. Larrañaga. 2013. “Classification of Neural Signals From Sparse Autoregressive Features.” Neurocomputing 111: 21–26.
Vidaurre, D., A. Llera, S. Smith, and M. Woolrich. 2021. “Behavioural Relevance of Spontaneous, Transient Brain Network Interactions in fMRI.” NeuroImage 229: 117713.
No Comments.