References: Abbott, L. F., & Regehr, W. G. (2004). Synaptic computation. Nature, 431, 796–803. https://doi.org/10.1038/nature03010. (PMID: 10.1038/nature0301015483601)
Afroze, F., Inoue, D., Farhana, T. I., et al. (2021). Monopolar flocking of microtubules in collective motion. Biochemical and Biophysical Research Communications, 563, 73–78. https://doi.org/10.1016/j.bbrc.2021.05.037. (PMID: 10.1016/j.bbrc.2021.05.03734062389)
Atzori, M., Tesi, L., Morra, E., et al. (2016). Room-temperature quantum coherence and Rabi oscillations in Vanadyl Phthalocyanine: Toward multifunctional molecular spin qubits. Journal of the American Chemical Society, 138, 2154–2157. https://doi.org/10.1021/jacs.5b13408. (PMID: 10.1021/jacs.5b1340826853512)
Beshkar, M. (2020). The QBIT theory of consciousness. Integrative Psychological and Behavioral Science, 54, 752–770. https://doi.org/10.1007/s12124-020-09528-1. (PMID: 10.1007/s12124-020-09528-132291583)
Beshkar, M. (2022). The QBIT theory: Consciousness from entangled qubits. Integrative Psychological and Behavioral Science. https://doi.org/10.1007/s12124-022-09745-w. (PMID: 10.1007/s12124-022-09745-w36567412)
Beshkar, M. (2023a). The QBIT theory of consciousness: Entropy and qualia. Integrative Psychological and Behavioral Science, 57(3), 937–949. https://doi.org/10.1007/s12124-022-09684-6. (PMID: 10.1007/s12124-022-09684-635359218)
Beshkar, M. (2023b). The QBIT theory of consciousness: Information, correlation, and coherence. Integrative Psychological and Behavioral Science, https://doi.org/10.1007/s12124-023-09784-x.
Beshkar, M. (2024). The QBIT theory: Consciousness and the maximum possible order. Integrative Psychological and Behavioral Science. https://doi.org/10.1007/s12124-024-09833-z. (PMID: 10.1007/s12124-024-09833-z38478306)
Cantero, M. R., Etchegoyen, V., Perez, C., P. L., et al. (2018). Bundles of brain microtubules generate electrical oscillations. Scientific Reports, 8, 11899. https://doi.org/10.1038/s41598-018-30453-2. (PMID: 10.1038/s41598-018-30453-2300937206085364)
Demidov, V. E., Dzyapko, O., Demokritov, S. O., et al. (2008). Observation of spontaneous coherence in Bose-Einstein condensate of magnons. Physical Review Letters, 100, 047205. https://doi.org/10.1103/PhysRevLett.100.047205. (PMID: 10.1103/PhysRevLett.100.04720518352327)
Demokritov, S. O., Demidov, V. E., Dzyapko, O., Melkov, G. A., Serga, A. A., Hillebrands, B., & Slavin, A. N. (2006). Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature, 443, 430–433. https://doi.org/10.1038/nature05117. (PMID: 10.1038/nature0511717006509)
Fröhlich, H. (1968). Long-range coherence and energy storage in biological systems. International Journal of Quantum Chemistry, 2(5), 641–649. https://doi.org/10.1002/qua.560020505. (PMID: 10.1002/qua.560020505)
Galve, F., Pachón, L. A., & Zueco, D. (2010). Bringing entanglement to the high temperature limit. Physical Review Letters, 105, 180501. https://doi.org/10.1103/PhysRevLett.105.180501. (PMID: 10.1103/PhysRevLett.105.18050121231092)
Gutierrez, B. C., Almenar, P., Martínez, M. R., L. J., et al. (2021). Honeybee brain oscillations are generated by microtubules. The concept of a brain central oscillator. Frontiers in Molecular Neuroscience, 14, 727025. https://doi.org/10.3389/fnmol.2021.727025. (PMID: 10.3389/fnmol.2021.727025346587848511451)
Gutierrez, B. C., Cantiello, H. F., & Cantero, M. R. (2023). The electrical properties of isolated microtubules. Scientific Reports, 13, 10165. https://doi.org/10.1038/s41598-023-36801-1. (PMID: 10.1038/s41598-023-36801-13734938310287629)
Hildner, R., Brinks, D., Nieder, J. B., et al. (2013). Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science, 340, 1448–1451. https://doi.org/10.1126/science.1235820. (PMID: 10.1126/science.123582023788794)
Janke, C., Rogowski, K., & van Dijk, J. (2008). Polyglutamylation: A fine-regulator of protein function? EMBO Reports, 9(7), 636–641. https://doi.org/10.1038/embor.2008.114. (PMID: 10.1038/embor.2008.114185665972475320)
Jie, Q., Zhang, K., Lai, C. W., et al. (2020). Room-temperature macroscopic coherence of two electron-hole plasmas in a microcavity. Physical Review Letters, 124, 157402. https://doi.org/10.1103/PhysRevLett.124.157402. (PMID: 10.1103/PhysRevLett.124.15740232357015)
Jones, S. L., & Svitkina, T. M. (2016). Axon initial segment cytoskeleton: Architecture, development, and role in neuron polarity. Neural Plasticity, 2016, 6808293. https://doi.org/10.1155/2016/6808293.
Jones, S. L., Korobova, F., & Svitkina, T. (2014). Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments. Journal of Cell Biology, 205(1), 67–81. https://doi.org/10.1083/jcb.201401045. (PMID: 10.1083/jcb.201401045247115033987141)
Kalra, A. P., Eakins, B. B., Patel, S. D., et al. (2020). All wired up: An exploration of the electrical properties of microtubules and tubulin. Acs Nano, 14(12), 16301–16320. https://doi.org/10.1021/acsnano.0c06945. (PMID: 10.1021/acsnano.0c0694533213135)
Kalra, A. P., Benny, A., Travis, S. M. (2023). Electronic energy migration in microtubules. ACS Central Science, 2023(9), 352–361. https://doi.org/10.1021/acscentsci.2c01114.
Lechelon, M., Meriguet, Y., Gori, M., et al. (2022). Experimental evidence for long-distance electrodynamic intermolecular forces. Science Advances, 8, eabl5855. https://doi.org/10.1126/sciadv.abl5855. (PMID: 10.1126/sciadv.abl5855351716778849397)
Lee, H., Cheng, Y. C., & Fleming, G. R. (2007). Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science, 316, 1462–1465. https://doi.org/10.1126/science.1142188. (PMID: 10.1126/science.114218817556580)
Leterrier, C. (2018). The Axon initial segment: An updated viewpoint. Journal of Neuroscience, 38(9), 2135–2145. https://doi.org/10.1523/JNEUROSCI.1922-17.2018. (PMID: 10.1523/JNEUROSCI.1922-17.201829378864)
Lundholm, I. V., Rodilla, H., Wahlgren, W. Y., et al. (2015). Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal. Structural Dynamics, 2, 054702. https://doi.org/10.1063/1.4931825. (PMID: 10.1063/1.4931825267988284711649)
Nicot, S., Gillard, G., Impheng, H., et al. (2023). A family of carboxypeptidases catalyzing α- and β-tubulin tail processing and deglutamylation. Science Advances, 9, eadi7838. https://doi.org/10.1126/sciadv.adi7838. (PMID: 10.1126/sciadv.adi78383770337210499314)
Priel, A., Ramos, A. J., Tuszynski, J. A., & Cantiello, H. F. (2006). A biopolymer transistor: Electrical amplification by microtubules. Biophysical Journal, 90, 4639–4643. https://doi.org/10.1529/biophysj.105.078915. (PMID: 10.1529/biophysj.105.078915165650581471843)
Scholes, G. D., Fleming, G. R., Olaya-Castro, A., & van Grondelle, R. (2011). Lessons from nature about solar light harvesting. Nature Chemistry, 3, 763–774. https://doi.org/10.1038/NCHEM.1145. (PMID: 10.1038/NCHEM.114521941248)
Snoke, D. W. (2024). Interpreting quantum mechanics: Modern foundations. Cambridge University Press. https://doi.org/10.1017/9781009261562.
Tuszynski, J. A. (2008). Molecular and cellular biophysics. CRC.
Vedral, V. (2010). Hot entanglement. Nature, 468, 769–770. https://doi.org/10.1038/468769a. (PMID: 10.1038/468769a21150986)
Zhang, Z., Agarwal, G. S., & Scully, M. O. (2019). Quantum fluctuations in the Fröhlich condensate of molecular vibrations driven far from equilibrium. Physical Review Letters, 122, 158101. https://doi.org/10.1103/PhysRevLett.122.158101. (PMID: 10.1103/PhysRevLett.122.15810131050540)
No Comments.