Consciousness and the Axon Initial Segment.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Beshkar M;Beshkar M
  • Source:
    Integrative psychological & behavioral science [Integr Psychol Behav Sci] 2024 Dec 19; Vol. 59 (1), pp. 1. Date of Electronic Publication: 2024 Dec 19.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Science + Business Media Country of Publication: United States NLM ID: 101319534 Publication Model: Electronic Cited Medium: Internet ISSN: 1936-3567 (Electronic) Linking ISSN: 19324502 NLM ISO Abbreviation: Integr Psychol Behav Sci Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York : Springer Science + Business Media
    • Subject Terms:
    • Abstract:
      According to the QBIT theory, consciousness depends on the emergence of macroscopic coherence in a specific intracellular substrate which registers and processes sensory information. This occurs in a particular neuronal compartment called the axon initial segment which has unique properties not found in other neuronal segments. These unique properties allow the integration of synaptic inputs, amplification of sensory signals, and spontaneous emergence of coherence which is necessary for conscious perception.
      Competing Interests: Declarations. Informed Consent: Not applicable. Competing Interests: The authors declare no competing interests. AI Use: During the preparation of this work the author used no AI and AI-assisted technologies.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Abbott, L. F., & Regehr, W. G. (2004). Synaptic computation. Nature, 431, 796–803. https://doi.org/10.1038/nature03010. (PMID: 10.1038/nature0301015483601)
      Afroze, F., Inoue, D., Farhana, T. I., et al. (2021). Monopolar flocking of microtubules in collective motion. Biochemical and Biophysical Research Communications, 563, 73–78. https://doi.org/10.1016/j.bbrc.2021.05.037. (PMID: 10.1016/j.bbrc.2021.05.03734062389)
      Atzori, M., Tesi, L., Morra, E., et al. (2016). Room-temperature quantum coherence and Rabi oscillations in Vanadyl Phthalocyanine: Toward multifunctional molecular spin qubits. Journal of the American Chemical Society, 138, 2154–2157. https://doi.org/10.1021/jacs.5b13408. (PMID: 10.1021/jacs.5b1340826853512)
      Beshkar, M. (2020). The QBIT theory of consciousness. Integrative Psychological and Behavioral Science, 54, 752–770. https://doi.org/10.1007/s12124-020-09528-1. (PMID: 10.1007/s12124-020-09528-132291583)
      Beshkar, M. (2022). The QBIT theory: Consciousness from entangled qubits. Integrative Psychological and Behavioral Science. https://doi.org/10.1007/s12124-022-09745-w. (PMID: 10.1007/s12124-022-09745-w36567412)
      Beshkar, M. (2023a). The QBIT theory of consciousness: Entropy and qualia. Integrative Psychological and Behavioral Science, 57(3), 937–949. https://doi.org/10.1007/s12124-022-09684-6. (PMID: 10.1007/s12124-022-09684-635359218)
      Beshkar, M. (2023b). The QBIT theory of consciousness: Information, correlation, and coherence. Integrative Psychological and Behavioral Science, https://doi.org/10.1007/s12124-023-09784-x.
      Beshkar, M. (2024). The QBIT theory: Consciousness and the maximum possible order. Integrative Psychological and Behavioral Science. https://doi.org/10.1007/s12124-024-09833-z. (PMID: 10.1007/s12124-024-09833-z38478306)
      Cantero, M. R., Etchegoyen, V., Perez, C., P. L., et al. (2018). Bundles of brain microtubules generate electrical oscillations. Scientific Reports, 8, 11899. https://doi.org/10.1038/s41598-018-30453-2. (PMID: 10.1038/s41598-018-30453-2300937206085364)
      Demidov, V. E., Dzyapko, O., Demokritov, S. O., et al. (2008). Observation of spontaneous coherence in Bose-Einstein condensate of magnons. Physical Review Letters, 100, 047205. https://doi.org/10.1103/PhysRevLett.100.047205. (PMID: 10.1103/PhysRevLett.100.04720518352327)
      Demokritov, S. O., Demidov, V. E., Dzyapko, O., Melkov, G. A., Serga, A. A., Hillebrands, B., & Slavin, A. N. (2006). Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature, 443, 430–433. https://doi.org/10.1038/nature05117. (PMID: 10.1038/nature0511717006509)
      Fröhlich, H. (1968). Long-range coherence and energy storage in biological systems. International Journal of Quantum Chemistry, 2(5), 641–649. https://doi.org/10.1002/qua.560020505. (PMID: 10.1002/qua.560020505)
      Galve, F., Pachón, L. A., & Zueco, D. (2010). Bringing entanglement to the high temperature limit. Physical Review Letters, 105, 180501. https://doi.org/10.1103/PhysRevLett.105.180501. (PMID: 10.1103/PhysRevLett.105.18050121231092)
      Gutierrez, B. C., Almenar, P., Martínez, M. R., L. J., et al. (2021). Honeybee brain oscillations are generated by microtubules. The concept of a brain central oscillator. Frontiers in Molecular Neuroscience, 14, 727025. https://doi.org/10.3389/fnmol.2021.727025. (PMID: 10.3389/fnmol.2021.727025346587848511451)
      Gutierrez, B. C., Cantiello, H. F., & Cantero, M. R. (2023). The electrical properties of isolated microtubules. Scientific Reports, 13, 10165. https://doi.org/10.1038/s41598-023-36801-1. (PMID: 10.1038/s41598-023-36801-13734938310287629)
      Hildner, R., Brinks, D., Nieder, J. B., et al. (2013). Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science, 340, 1448–1451. https://doi.org/10.1126/science.1235820. (PMID: 10.1126/science.123582023788794)
      Janke, C., Rogowski, K., & van Dijk, J. (2008). Polyglutamylation: A fine-regulator of protein function? EMBO Reports, 9(7), 636–641. https://doi.org/10.1038/embor.2008.114. (PMID: 10.1038/embor.2008.114185665972475320)
      Jie, Q., Zhang, K., Lai, C. W., et al. (2020). Room-temperature macroscopic coherence of two electron-hole plasmas in a microcavity. Physical Review Letters, 124, 157402. https://doi.org/10.1103/PhysRevLett.124.157402. (PMID: 10.1103/PhysRevLett.124.15740232357015)
      Jones, S. L., & Svitkina, T. M. (2016). Axon initial segment cytoskeleton: Architecture, development, and role in neuron polarity. Neural Plasticity, 2016, 6808293. https://doi.org/10.1155/2016/6808293.
      Jones, S. L., Korobova, F., & Svitkina, T. (2014). Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments. Journal of Cell Biology, 205(1), 67–81. https://doi.org/10.1083/jcb.201401045. (PMID: 10.1083/jcb.201401045247115033987141)
      Kalra, A. P., Eakins, B. B., Patel, S. D., et al. (2020). All wired up: An exploration of the electrical properties of microtubules and tubulin. Acs Nano, 14(12), 16301–16320. https://doi.org/10.1021/acsnano.0c06945. (PMID: 10.1021/acsnano.0c0694533213135)
      Kalra, A. P., Benny, A., Travis, S. M. (2023). Electronic energy migration in microtubules. ACS Central Science, 2023(9), 352–361. https://doi.org/10.1021/acscentsci.2c01114.
      Lechelon, M., Meriguet, Y., Gori, M., et al. (2022). Experimental evidence for long-distance electrodynamic intermolecular forces. Science Advances, 8, eabl5855. https://doi.org/10.1126/sciadv.abl5855. (PMID: 10.1126/sciadv.abl5855351716778849397)
      Lee, H., Cheng, Y. C., & Fleming, G. R. (2007). Coherence dynamics in photosynthesis: Protein protection of excitonic coherence. Science, 316, 1462–1465. https://doi.org/10.1126/science.1142188. (PMID: 10.1126/science.114218817556580)
      Leterrier, C. (2018). The Axon initial segment: An updated viewpoint. Journal of Neuroscience, 38(9), 2135–2145. https://doi.org/10.1523/JNEUROSCI.1922-17.2018. (PMID: 10.1523/JNEUROSCI.1922-17.201829378864)
      Lundholm, I. V., Rodilla, H., Wahlgren, W. Y., et al. (2015). Terahertz radiation induces non-thermal structural changes associated with Fröhlich condensation in a protein crystal. Structural Dynamics, 2, 054702. https://doi.org/10.1063/1.4931825. (PMID: 10.1063/1.4931825267988284711649)
      Nicot, S., Gillard, G., Impheng, H., et al. (2023). A family of carboxypeptidases catalyzing α- and β-tubulin tail processing and deglutamylation. Science Advances, 9, eadi7838. https://doi.org/10.1126/sciadv.adi7838. (PMID: 10.1126/sciadv.adi78383770337210499314)
      Priel, A., Ramos, A. J., Tuszynski, J. A., & Cantiello, H. F. (2006). A biopolymer transistor: Electrical amplification by microtubules. Biophysical Journal, 90, 4639–4643. https://doi.org/10.1529/biophysj.105.078915. (PMID: 10.1529/biophysj.105.078915165650581471843)
      Scholes, G. D., Fleming, G. R., Olaya-Castro, A., & van Grondelle, R. (2011). Lessons from nature about solar light harvesting. Nature Chemistry, 3, 763–774. https://doi.org/10.1038/NCHEM.1145. (PMID: 10.1038/NCHEM.114521941248)
      Snoke, D. W. (2024). Interpreting quantum mechanics: Modern foundations. Cambridge University Press. https://doi.org/10.1017/9781009261562.
      Tuszynski, J. A. (2008). Molecular and cellular biophysics. CRC.
      Vedral, V. (2010). Hot entanglement. Nature, 468, 769–770. https://doi.org/10.1038/468769a. (PMID: 10.1038/468769a21150986)
      Zhang, Z., Agarwal, G. S., & Scully, M. O. (2019). Quantum fluctuations in the Fröhlich condensate of molecular vibrations driven far from equilibrium. Physical Review Letters, 122, 158101. https://doi.org/10.1103/PhysRevLett.122.158101. (PMID: 10.1103/PhysRevLett.122.15810131050540)
    • Contributed Indexing:
      Keywords: Axon initial segment; Brain; Consciousness
    • Publication Date:
      Date Created: 20241219 Date Completed: 20241219 Latest Revision: 20241219
    • Publication Date:
      20241219
    • Accession Number:
      10.1007/s12124-024-09883-3
    • Accession Number:
      39699783