GABA A R-PPT1 palmitoylation homeostasis controls synaptic transmission and circuitry oscillation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101562664 Publication Model: Electronic Cited Medium: Internet ISSN: 2158-3188 (Electronic) Linking ISSN: 21583188 NLM ISO Abbreviation: Transl Psychiatry Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, NY : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      The infantile neuronal ceroid lipofuscinosis, also called CLN1 disease, is a fatal neurodegenerative disease caused by mutations in the CLN1 gene encoding palmitoyl protein thioesterase 1 (PPT1). Identifying the depalmitoylation substrates of PPT1 is crucial for understanding CLN1 disease. In this study, we found that GABA A R, the critical synaptic protein essential for inhibitory neurotransmission, is a substrate of PPT1. PPT1 depalmitoylates GABA A R α1 subunit at Cystein-260, while binding to Cystein-165 and -179. Mutations of PPT1 or its GABA A R α1 subunit binding site enhanced inhibitory synaptic transmission and strengthened oscillations powers but disrupted phase coupling in CA1 region and impaired learning and memory in 1- to 2-months-old PPT1-deficient and Gabra1 em1 mice. Our study highlights the critical role of PPT1 in maintaining GABA A R palmitoylation homeostasis and reveals a previously unknown molecular pathway in CLN1 diseases induced by PPT1 mutations.
      Competing Interests: Competing interests: The authors declare no competing interests. Ethics approval and consent to participate: The experiments did not involve tissues from humans. Animal use and procedures were performed according to the regulations and requirements of XXMU Animal Ethics Committee (No. XYLL2021053).
      (© 2024. The Author(s).)
    • References:
      Camp LA, Verkruyse LA, Afendis SJ, Slaughter CA, Hofmann SL. Molecular cloning and expression of palmitoyl-protein thioesterase. J Biol Chem. 1994;269:23212–9. (PMID: 791601610.1016/S0021-9258(17)31641-1)
      Jin J, Zhi X, Wang X, Meng D. Protein palmitoylation and its pathophysiological relevance. J Cell Physiol. 2021;236:3220–33. (PMID: 3309450410.1002/jcp.30122)
      Lemonidis K, Werno MW, Greaves J, Diez-Ardanuy C, Sanchez-Perez MC, Salaun C, et al. The zDHHC family of S-acyltransferases. Biochem Soc Trans. 2015;43:217–21. (PMID: 2584992010.1042/BST20140270)
      Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res. 2006;47:1118–27. (PMID: 1658242010.1194/jlr.R600007-JLR200)
      Vesa J, Hellsten E, Verkruyse LA, Camp LA, Rapola J, Santavuori P, et al. Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature. 1995;376:584–7. (PMID: 763780510.1038/376584a0)
      Lin DT, Conibear E. Enzymatic protein depalmitoylation by acyl protein thioesterases. Biochem Soc Trans. 2015;43:193–8. (PMID: 2584991610.1042/BST20140235)
      Santorelli FM, Garavaglia B, Cardona F, Nardocci N, Bernardina BD, Sartori S, et al. Molecular epidemiology of childhood neuronal ceroid-lipofuscinosis in Italy. Orphanet J Rare Dis. 2013;8:19. (PMID: 23374165357029510.1186/1750-1172-8-19)
      Sleat DE, Gedvilaite E, Zhang Y, Lobel P, Xing J. Analysis of large-scale whole exome sequencing data to determine the prevalence of genetically-distinct forms of neuronal ceroid lipofuscinosis. Gene. 2016;593:284–91. (PMID: 27553520550577010.1016/j.gene.2016.08.031)
      Williams RE. 361Appendix 1: NCL incidence and prevalence data. In: Mole S, Williams R, Goebel H, editors. The neuronal ceroid lipofuscinoses (Batten Disease). Oxford University Press; 2011.
      Santavuori P, Haltia M, Rapola J, Raitta C. Infantile type of so-called neuronal ceroid-lipofuscinosis. 1. A clinical study of 15 patients. J Neurol. Sci. 1973;18:257–67. (PMID: 469830910.1016/0022-510X(73)90075-0)
      Bouchelion A, Zhang Z, Li Y, Qian H, Mukherjee AB. Mice homozygous for c.451C>T mutation in Cln1 gene recapitulate INCL phenotype. Ann Clin Transl Neurol. 2014;1:1006–23. (PMID: 25574475428412610.1002/acn3.144)
      Hobert JA, Dawson G. Neuronal ceroid lipofuscinoses therapeutic strategies: past, present and future. Biochim Biophys Acta. 2006;1762:945–53. (PMID: 1704943610.1016/j.bbadis.2006.08.004)
      Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, Zhang Z, et al. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. Mol Neurodegener. 2019;14:4. (PMID: 30651094633571210.1186/s13024-018-0300-6)
      Gorenberg EL, Massaro Tieze S, Yücel B, Zhao HR, Chou V, Wirak GS, et al. Identification of substrates of palmitoyl protein thioesterase 1 highlights roles of depalmitoylation in disulfide bond formation and synaptic function. PLoS Biol. 2022;20:e3001590. (PMID: 35358180900478210.1371/journal.pbio.3001590)
      Chu-LaGraff Q, Blanchette C, O’Hern P, Denefrio C. The batten disease palmitoyl protein thioesterase 1 gene regulates neural specification and axon connectivity during Drosophila embryonic development. PLoS ONE. 2010;5:e14402. (PMID: 21203506300871710.1371/journal.pone.0014402)
      Sapir T, Segal M, Grigoryan G, Hansson KM, James P, Segal M, et al. The interactome of palmitoyl-protein thioesterase 1 (PPT1) affects neuronal morphology and function. Front Cell Neurosci. 2019;13:92. (PMID: 30918483642486810.3389/fncel.2019.00092)
      Lange J, Haslett LJ, Lloyd-Evans E, Pocock JM, Sands MS, Williams BP, et al. Compromised astrocyte function and survival negatively impact neurons in infantile neuronal ceroid lipofuscinosis. Acta Neuropathol Commun. 2018;6:74. (PMID: 30089511608181110.1186/s40478-018-0575-4)
      Kim SJ, Zhang Z, Sarkar C, Tsai PC, Lee YC, Dye L, et al. Palmitoyl protein thioesterase-1 deficiency impairs synaptic vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice. J Clin Investig. 2008;118:3075–86. (PMID: 18704195251538110.1172/JCI33482)
      Koster KP, Francesconi W, Berton F, Alahmadi S, Srinivas R, Yoshii A. Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model. eLife. 2019;8:e40316. (PMID: 30946007646470410.7554/eLife.40316)
      Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 depalmitoylating enzymes. J Neurosci. 2016;36:6431–44. (PMID: 27307232501578010.1523/JNEUROSCI.0419-16.2016)
      Nakazono T, Jun H, Blurton-Jones M, Green KN, Igarashi KM. Gamma oscillations in the entorhinal-hippocampal circuit underlying memory and dementia. Neurosci Res. 2018;129:40–46. (PMID: 29438778705955610.1016/j.neures.2018.02.002)
      Zhang X, Wang M, Feng B, Zhang Q, Tong J, Wang M. et al. Seizures in PPT1 knock-in mice are associated with inflammatory activation of microglia. Int J Mol Sci. 2022;23:5586. (PMID: 35628400914476310.3390/ijms23105586)
      Sarkar C, Chandra G, Peng S, Zhang Z, Liu A, Mukherjee AB. Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. Nat Neurosci. 2013;16:1608–17. (PMID: 24056696381227110.1038/nn.3526)
      Bleakley LE, McKenzie CE, Reid CA. Efficacy of antiseizure medication in a mouse model of HCN1 developmental and epileptic encephalopathy. Epilepsia. 2023;64:e1–e8. (PMID: 3630071610.1111/epi.17447)
      Adamos DA, Kosmidis EK, Theophilidis G. Performance evaluation of PCA-based spike sorting algorithms. Comput Methods Prog Biomed. 2008;91:232–44. (PMID: 10.1016/j.cmpb.2008.04.011)
      Xu H, Liu L, Tian Y, Wang J, Li J, Zheng J, et al. A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron. 2019;102:668–682.e665. (PMID: 3089837610.1016/j.neuron.2019.02.026)
      Sfondouris JL, Quebedeaux TM, Holdgraf C, Musto AE. Combined process automation for large-scale EEG analysis. Comput Biol Med. 2012;42:129–34. (PMID: 2213669610.1016/j.compbiomed.2011.10.017)
      Fisher NI. Statistical analysis of circular data || Descriptive methods. 1993p. 15–38. https://doi.org/10.1017/CBO9780511564345.
      Gregoire TG. Statistical analysis of circular data. Forest Science. 1996;42:515–16. (PMID: 10.1093/forestscience/42.4.515)
      Berens P. CircStat: a MATLAB toolbox for circular statistics. J Stat Softw. 2009;31:1–21. (PMID: 10.18637/jss.v031.i10)
      Kielar C, Maddox L, Bible E, Pontikis CC, Macauley SL, Griffey MA, et al. Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiol Dis. 2007;25:150–62. (PMID: 1704627210.1016/j.nbd.2006.09.001)
      Ahrens-Nicklas RC, Tecedor L, Hall AF, Lysenko E, Cohen AS, Davidson BL. et al. Neuronal network dysfunction precedes storage and neurodegeneration in a lysosomal storage disorder. JCI insight. 2019;4:e131961. (PMID: 31573978694876510.1172/jci.insight.131961)
      Musto AE, Walker CP, Petasis NA, Bazan NG. Hippocampal neuro-networks and dendritic spine perturbations in epileptogenesis are attenuated by neuroprotectin d1. PLoS ONE. 2015;10:e0116543. (PMID: 25617763430528310.1371/journal.pone.0116543)
      Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature. 2010;464:903–7. (PMID: 2033607110.1038/nature08860)
      Arroyo-García LE, Isla AG, Andrade-Talavera Y, Balleza-Tapia H, Loera-Valencia R, Alvarez-Jimenez L, et al. Impaired spike-gamma coupling of area CA3 fast-spiking interneurons as the earliest functional impairment in the App(NL-G-F) mouse model of Alzheimer’s disease. Mol Psychiatry. 2021;26:5557–67. (PMID: 34385602875849410.1038/s41380-021-01257-0)
      Mole SE, Williams RE, Goebel HH. Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics. 2005;6:107–26. (PMID: 1596570910.1007/s10048-005-0218-3)
      Qiu J, Shi P, Mao W, Zhao Y, Liu W, Wang Y. Effect of apoptosis in neural stem cells treated with sevoflurane. BMC Anesthesiol. 2015;15:25. (PMID: 25774088435939010.1186/s12871-015-0018-8)
      Hann UA, Hann SR. The a1 subunit of GABAA receptor is repressed by c-Myc and is pro-apoptotic. J Cell Biochem. 2006;97:1094–1103. (PMID: 1629432010.1002/jcb.20708)
      Collins MO, Woodley KT, Choudhary JS. Global, site-specific analysis of neuronal protein S-acylation. Sci Rep. 2017;7:4683. (PMID: 28680068549853510.1038/s41598-017-04580-1)
      Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature. 2008;456:904–9. (PMID: 19092927261086010.1038/nature07605)
      Segal-Salto M, Hansson K, Sapir T, Kaplan A, Levy T, Schweizer M, et al. Proteomics insights into infantile neuronal ceroid lipofuscinosis (CLN1) point to the involvement of cilia pathology in the disease. Hum Mol Genet. 2017;26:1678. (PMID: 2833487110.1093/hmg/ddx074)
      Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct glutamate decarboxylases. Neuron. 1991;7:91–100. (PMID: 206981610.1016/0896-6273(91)90077-D)
      Bu DF, Erlander MG, Hitz BC, Tillakaratne NJ, Kaufman DL, Wagner-McPherson CB, et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA. 1992;89:2115–9. (PMID: 15495704860710.1073/pnas.89.6.2115)
      Rathenberg J, Kittler JT, Moss SJ. Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol Cell Neurosci. 2004;26:251–7. (PMID: 1520785010.1016/j.mcn.2004.01.012)
      Fang C, Deng L, Keller CA, Fukata M, Fukata Y, Chen G, et al. GODZ-mediated palmitoylation of GABA(A) receptors is required for normal assembly and function of GABAergic inhibitory synapses. J Neurosci. 2006;26:12758–68. (PMID: 17151279236689710.1523/JNEUROSCI.4214-06.2006)
      Keller CA, Yuan X, Panzanelli P, Martin ML, Alldred M, Sassoè-Pognetto M, et al. The gamma2 subunit of GABA(A) receptors is a substrate for palmitoylation by GODZ. J Neurosci. 2004;24:5881–91. (PMID: 15229235236689010.1523/JNEUROSCI.1037-04.2004)
      Shen ZC, Wu PF, Wang F, Xia ZX, Deng Q, Nie TL, et al. Gephyrin palmitoylation in basolateral amygdala mediates the anxiolytic action of benzodiazepine. Biol Psychiatry. 2019;85:202–13. (PMID: 3045485110.1016/j.biopsych.2018.09.024)
      Dejanovic B, Semtner M, Ebert S, Lamkemeyer T, Neuser F, Lüscher B, et al. Palmitoylation of gephyrin controls receptor clustering and plasticity of GABAergic synapses. PLoS Biol. 2014;12:e1001908. (PMID: 25025157409907410.1371/journal.pbio.1001908)
      Kilpatrick CL, Murakami S, Feng M, Wu X, Lal R, Chen G, et al. Dissociation of Golgi-associated DHHC-type zinc finger protein (GODZ)- and sertoli cell gene with a zinc finger domain-β (SERZ-β)-mediated palmitoylation by loss of function analyses in knock-out mice. J Biol Chem. 2016;291:27371–86. (PMID: 27875292520716310.1074/jbc.M116.732768)
      Segal-Salto M, Sapir T, Reiner O. Reversible cysteine acylation regulates the activity of human palmitoyl-protein thioesterase 1 (PPT1). PLoS ONE. 2016;11:e0146466. (PMID: 26731412470172210.1371/journal.pone.0146466)
      Won SJ, Cheung See Kit M, Martin BR. Protein depalmitoylases. Crit Rev Biochem Mol Biol. 2018;53:83–98. (PMID: 2923921610.1080/10409238.2017.1409191)
      Kanadome T, Yokoi N, Fukata Y, Fukata M. Systematic screening of depalmitoylating enzymes and evaluation of their activities by the Acyl-PEGyl exchange gel-shift (APEGS) assay. Methods Mol Biol. 2019;2009:83–98. (PMID: 3115239710.1007/978-1-4939-9532-5_7)
      Lin DT, Conibear E. ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. eLife. 2015;4:e11306. (PMID: 26701913475573710.7554/eLife.11306)
      Garner HL, Whittington MA, Henderson Z. Induction by kainate of theta frequency rhythmic activity in the rat medial septum-diagonal band complex in vitro. J Physiol. 2005;564:83–102. (PMID: 15677688145603510.1113/jphysiol.2004.080622)
      Lu CB, Henderson Z. Nicotine induction of theta frequency oscillations in rodent hippocampus in vitro. Neuroscience. 2010;166:84–93. (PMID: 2000470610.1016/j.neuroscience.2009.11.072)
      Lu CB, Li CZ, Li DL, Henderson Z. Nicotine induction of theta frequency oscillations in rodent medial septal diagonal band in vitro. Acta Pharmacol Sin. 2013;34:819–29. (PMID: 23524566400288810.1038/aps.2012.198)
      Soltesz I, Deschênes M. Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J Neurophysiol. 1993;70:97–116. (PMID: 839559110.1152/jn.1993.70.1.97)
      Colgin LL, Moser EI. Gamma oscillations in the hippocampus. Physiology. 2010;25:319–29.
      Buzsáki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25. (PMID: 22443509404954110.1146/annurev-neuro-062111-150444)
      Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR. Human theta oscillations exhibit task dependence during virtual maze navigation. Nature. 1999;399:781–4. (PMID: 1039124310.1038/21645)
      Belchior H, Lopes-Dos-Santos V, Tort AB, Ribeiro S. Increase in hippocampal theta oscillations during spatial decision making. Hippocampus. 2014;24:693–702. (PMID: 24520011422902810.1002/hipo.22260)
      Jensen O, Lisman JE. Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. J Neurophysiol. 2000;83:2602–9. (PMID: 1080566010.1152/jn.2000.83.5.2602)
      Buzsáki G. Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus. 2005;15:827–40. (PMID: 1614908210.1002/hipo.20113)
      Winson J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science. 1978;201:160–3. (PMID: 66364610.1126/science.663646)
      Jones MW, Wilson MA. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. 2005;3:e402. (PMID: 16279838128353610.1371/journal.pbio.0030402)
      Buzsáki G. Theta oscillations in the hippocampus. Neuron. 2002;33:325–40. (PMID: 1183222210.1016/S0896-6273(02)00586-X)
      Kravljanac R, Sims K. A case of juvenile CLN1- challenge in diagnosis and epilepsy treatment. Neurocase. 2021;27:165–8. (PMID: 3384940210.1080/13554794.2021.1905852)
      Maeser S, Petre BA, Ion L, Rawer S, Kohlschütter A, Santorelli FM, et al. Enzymatic diagnosis of neuronal lipofuscinoses in dried blood spots using substrates for concomitant tandem mass spectrometry and fluorimetry. J Mass Spectrom. 2021;56:e4675. (PMID: 3331447010.1002/jms.4675)
      Schulz A, Kohlschütter A, Mink J, Simonati A, Williams R. NCL diseases - clinical perspectives. Biochim Biophys Acta. 2013;1832:1801–6. (PMID: 23602993463112710.1016/j.bbadis.2013.04.008)
      Gupta P, Soyombo AA, Atashband A, Wisniewski KE, Shelton JM, Richardson JA, et al. Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc Natl Acad Sci USA. 2001;98:13566–71. (PMID: 117174246108110.1073/pnas.251485198)
      Dearborn JT, Harmon SK, Fowler SC, O’Malley KL, Taylor GT, Sands MS, et al. Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers. Sci Rep. 2015;5:12752. (PMID: 26238334452384910.1038/srep12752)
    • Grant Information:
      81771517 National Natural Science Foundation of China (National Science Foundation of China)
    • Accession Number:
      EC 3.1.2.- (Thiolester Hydrolases)
      EC 3.1.2.22 (palmitoyl-protein thioesterase)
      0 (Receptors, GABA-A)
    • Publication Date:
      Date Created: 20241218 Date Completed: 20241218 Latest Revision: 20241218
    • Publication Date:
      20241219
    • Accession Number:
      10.1038/s41398-024-03206-1
    • Accession Number:
      39695089