Dynamic interaction of antibiotic resistance between plant microbiome and organic fertilizers: sources, dissemination, and health risks.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
    • Publication Information:
      Publication: 2005- : Berlin : Springer
      Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
    • Subject Terms:
    • Abstract:
      Antibiotic resistance is a global health problem driven by the irrational use of antibiotics in different areas (such as agriculture, animal farming, and human healthcare). Sub-lethal concentrations of antibiotic residues impose selective pressure on environmental, plant-associated, and human microbiome leading to the emergence of antibiotic-resistant bacteria (ARB). This review summarizes all sources of antibiotic resistance in agricultural soils (including manure, sewage sludge, wastewater, hospitals/pharmaceutical industry, and bioinoculants). The factors (such as the physicochemical properties of soil, root exudates, concentration of antibiotic exposure, and heavy metals) that facilitate the transmission of resistance in plant microbiomes are discussed. Potential solutions for effective measures and control of antibiotic resistance in the environment are also hypothesized. Manure exhibits the highest antibiotics load, followed by hospital and municipal WW. Chlortetracycline, tetracycline, and sulfadiazine have the highest concentrations in the manure. Antibiotic resistance from organic fertilizers is transmitted to the plant microbiome via horizontal gene transfer (HGT). Plant microbiomes serve as transmission routes of ARB and ARGS to humans. The ingestion of ARB leads to human health risks (such as ineffectiveness of medication, increased morbidity, and mortality).
      Competing Interests: Declarations. Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Abbas A, Barkhouse A, Hackenberger D, Wright GD (2024) Antibiotic resistance: a key microbial survival mechanism that threatens public health. Cell Host Microbe 32:837–851. https://doi.org/10.1016/j.chom.2024.05.015. (PMID: 10.1016/j.chom.2024.05.01538870900)
      Abdelaziz AM, Hashem AH, El-Sayyad GS, El-Wakil DA, Selim S, Alkhalifah DHM, Attia MS (2023) Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Trop Plant Pathol 48:105–127. https://doi.org/10.1007/s40858-022-00544-7. (PMID: 10.1007/s40858-022-00544-7)
      Adam E, Bernhart M, Müller H, Winkler J, Berg G (2018) The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant Soil 422:35–49. https://doi.org/10.1007/s11104-016-3113-9. (PMID: 10.1007/s11104-016-3113-9)
      Agersø Y, Bjerre K, Brockmann E, Johansen E, Nielsen B, Siezen R, Stuer-Lauridsen B, Wels M, Zeidan AA (2019) Putative antibiotic resistance genes present in extant Bacillus licheniformis and Bacillus paralicheniformis strains are probably intrinsic and part of the ancient resistome. PLoS ONE 14:e0210363. https://doi.org/10.1371/journal.pone.0210363. (PMID: 10.1371/journal.pone.0210363306456386333372)
      Ahmad N, Joji RM, Shahid M (2023) Evolution and implementation of one health to control the dissemination of antibiotic-resistant bacteria and resistance genes: a review. Front Cell Infect Microbiol 12:1065796. https://doi.org/10.3389/fcimb.2022.1065796. (PMID: 10.3389/fcimb.2022.1065796367266449884834)
      Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, Mohamed MG (2024) Antimicrobial resistance: impacts, challenges, and future prospects. J Med Surg Public Health 2:100081. https://doi.org/10.1016/j.glmedi.2024.100081. (PMID: 10.1016/j.glmedi.2024.100081)
      Al-Rimawi F, Hijaz F, Nehela Y, Batuman O, Killiny N (2019) Uptake, translocation, and stability of oxytetracycline and streptomycin in citrus plants. Antibiotics 8:196. https://doi.org/10.3390/antibiotics8040196. (PMID: 10.3390/antibiotics8040196317178846963747)
      Albero B, Tadeo JL, Escario M, Miguel E, Pérez RA (2018) Persistence and availability of veterinary antibiotics in soil and soil-manure systems. Sci Total Environ 643:1562–1570. https://doi.org/10.1016/j.scitotenv.2018.06.314. (PMID: 10.1016/j.scitotenv.2018.06.31430189572)
      Ali S, Hameed S, Shahid M, Iqbal M, Lazarovits G, Imran A (2020) Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity. Microbiol Res 232:126389. https://doi.org/10.1016/j.micres.2019.126389. (PMID: 10.1016/j.micres.2019.12638931821969)
      Amna XY, Farooq MA, Javed MT, Kamran MA, Mukhtar T, Ali J, Tabassum T, Rehman SU, Hussain Munis MF, Sultan T, Chaudhary HJ (2020) Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiol Biochem 151:640–649. https://doi.org/10.1016/j.plaphy.2020.04.016. (PMID: 10.1016/j.plaphy.2020.04.01632339911)
      Ashy RA, Jalal RS, Sonbol HS, Alqahtani MD, Sefrji FO, Alshareef SA, Alshehrei FM, Abuauf HW, Baz L, Tashkandi MA, Hakeem IJ, Refai MY, Abulfaraj AA (2023) Functional annotation of rhizospheric phageome of the wild plant species Moringa oleifera. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1166148. (PMID: 10.3389/fmicb.2023.11661483726068310227523)
      Awais M, Tariq M, Ali A, Ali Q, Khan A, Tabassum B, Nasir IA, Husnain T (2017) Isolation, characterization and inter-relationship of phosphate solubilizing bacteria from the rhizosphere of sugarcane and rice. Biocatal Agric Biotechnol 11:312–321. https://doi.org/10.1016/j.bcab.2017.07.018. (PMID: 10.1016/j.bcab.2017.07.018)
      Awasthi SK, Wong JWC, Li J, Wang Q, Zhang Z, Kumar S, Awasthi MK (2018) Evaluation of microbial dynamics during post-consumption food waste composting. Bioresour Technol 251:181–188. https://doi.org/10.1016/j.biortech.2017.12.040. (PMID: 10.1016/j.biortech.2017.12.04029274858)
      Badger S, Sullivan K, Jordan D, Caraguel C, Page S, Cusack P, Frith D, Trott D (2020) Antimicrobial use and stewardship practices on Australian beef feedlots. Aust Vet J 98:37–47. https://doi.org/10.1111/avj.12889. (PMID: 10.1111/avj.1288931721160)
      Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS (2022) Phyllosphere microbiome: diversity and functions. Microbiol Res 254:126888. https://doi.org/10.1016/j.micres.2021.126888. (PMID: 10.1016/j.micres.2021.12688834700185)
      Bello SO, Imam MU, Bello MB, Yunusa A, Adamu AA, Shuaibu A, Igumbor EU, Habib ZG, Popoola MA, Ochu CL, Bello AY, Deeni YY, Okoye I (2022) Erythromycin retapamulin pyridoxine folic acid and ivermectin dose dependently inhibit cytopathic effect papain-like protease and M PRO of SARS-CoV-2. bioRxiv. https://doi.org/10.1101/2022.12.28.522082. (PMID: 10.1101/2022.12.28.522082)
      Bhatt P, Verma A, Verma S, Anwar MS, Prasher P, Mudila H, Chen S (2020) Understanding phytomicrobiome: a potential reservoir for better crop management. Sustainability 12:5446. https://doi.org/10.3390/su12135446. (PMID: 10.3390/su12135446)
      Blau K, Casadevall L, Wolters B, Van den Meersche T, Kreuzig R, Smalla K, Jechalke S (2017) Soil texture-depending effects of doxycycline and streptomycin applied with manure on the bacterial community composition and resistome. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fix145. (PMID: 10.1093/femsec/fix145)
      Bougnom BP, Thiele-Bruhn S, Ricci V, Zongo C, Piddock LJV (2020) Raw wastewater irrigation for urban agriculture in three African cities increases the abundance of transferable antibiotic resistance genes in soil, including those encoding extended spectrum β-lactamases (ESBLs). Sci Total Environ 698:134201. https://doi.org/10.1016/j.scitotenv.2019.134201. (PMID: 10.1016/j.scitotenv.2019.13420131505362)
      Brisson VL, Schmidt JE, Northen TR, Vogel JP, Gaudin ACM (2019) Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil. Sci Rep. https://doi.org/10.1038/s41598-019-52148-y. (PMID: 10.1038/s41598-019-52148-y316666146821752)
      Browne AJ, Chipeta MG, Haines-Woodhouse G, Kumaran EPA, Hamadani BHK, Zaraa S, Henry NJ, Deshpande A, Reiner RC, Day NPJ, Lopez AD, Dunachie S, Moore CE, Stergachis A, Hay SI, Dolecek C (2021) Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. Lancet Planet Health 5:e893-e904. https://doi.org/10.1016/S2542-5196(21)00280-1. (PMID: 10.1016/S2542-5196(21)00280-1)
      Busse D, Schaeftlein A, Solms A, Ilia L, Michelet R, Zeitlinger M, Huisinga W, Kloft C (2021) Which analysis approach is adequate to leverage clinical microdialysis data? A quantitative comparison to investigate exposure and response exemplified by levofloxacin. Pharm Res 38:381–395. https://doi.org/10.1007/s11095-021-02994-1. (PMID: 10.1007/s11095-021-02994-1337237937994214)
      Carreiras J, Cruz-Silva A, Fonseca B, Carvalho RC, Cunha JP, Proença Pereira J, Paiva-Silva C, A Santos S, Janeiro Sequeira R, Mateos-Naranjo E, Rodríguez-Llorente ID, Pajuelo E, Redondo-Gómez S, Matos AR, Mesa-Marín J, Figueiredo A, Duarte B (2023) Improving grapevine heat stress resilience with marine plant growth-promoting rhizobacteria consortia. Microorganisms 11(4):856. https://doi.org/10.3390/microorganisms11040856. (PMID: 10.3390/microorganisms110408563711027910141645)
      Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, De Hollander M, Ruiz-Buck D, Mendes LW, van Ijcken WF, Gomez-Exposito R, Elsayed SS (2019) Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366:606–612. https://doi.org/10.1126/science.aaw9285. (PMID: 10.1126/science.aaw928531672892)
      Cernava T, Erlacher A, Soh J, Sensen CW, Grube M, Berg G (2019) Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill). Microbiome 7:13. https://doi.org/10.1186/s40168-019-0624-7. (PMID: 10.1186/s40168-019-0624-7306964926352427)
      Cerqueira F, Matamoros V, Bayona JM, Berendonk TU, Elsinga G, Hornstra LM, Piña B (2019) Antibiotic resistance gene distribution in agricultural fields and crops. A soil-to-food analysis. Environ Res 177:108608. https://doi.org/10.1016/j.envres.2019.108608. (PMID: 10.1016/j.envres.2019.10860831377583)
      Chamkhi I, Sbabou L, Aurag J (2023) Isolation and screening of multi-trait plant growth-promoting rhizobacteria (PGPR) colonizing saffron (Crocus sativus L.) rhizosphere. Biocatal Agric Biotechnol 51:102730. https://doi.org/10.1016/j.bcab.2023.102730. (PMID: 10.1016/j.bcab.2023.102730)
      Chaudhry V, Runge P, Sengupta P, Doehlemann G, Parker JE, Kemen E (2021) Shaping the leaf microbiota: plant-microbe-microbe interactions. J Exp Bot 72:36–56. https://doi.org/10.1093/jxb/eraa417. (PMID: 10.1093/jxb/eraa41732910810)
      Chen C, Pankow CA, Oh M, Heath LS, Zhang L, Du P, Xia K, Pruden A (2019a) Effect of antibiotic use and composting on antibiotic resistance gene abundance and resistome risks of soils receiving manure-derived amendments. Environ Int 128:233–243. https://doi.org/10.1016/j.envint.2019.04.043. (PMID: 10.1016/j.envint.2019.04.04331059918)
      Chen J, Ying G-G, Deng W-J (2019b) Antibiotic residues in food: extraction, analysis, and human health concerns. J Agric Food Chem 67:7569–7586. https://doi.org/10.1021/acs.jafc.9b01334. (PMID: 10.1021/acs.jafc.9b0133431198037)
      Chen P, Yu K, He Y (2023a) The dynamics and transmission of antibiotic resistance associated with plant microbiomes. Environ Int 176:107986. https://doi.org/10.1016/j.envint.2023.107986. (PMID: 10.1016/j.envint.2023.10798637257204)
      Chen X, Sun C, Zhang Q, Jiang X, Liu C, Lin H, Li B (2023b) Selected rhizobacteria facilitated phytoremediation of barren and heavy metal contaminated gold mine tailings by Festuca arundinacea. Chemosphere 337:139297. https://doi.org/10.1016/j.chemosphere.2023.139297. (PMID: 10.1016/j.chemosphere.2023.13929737353171)
      Chen Y, Li S, Li W, Wang Y, Shi J, Xu X, Zhang P, Chen D, Gang R, Luo Q (2024) Role of MIC levels and 23S rRNA mutation sites to clarithromycin in 14-day clarithromycin bismuth quadruple therapy for Helicobacter pylori eradication: a prospective trial in Beijing. Heliyon 10:e29774. https://doi.org/10.1016/j.heliyon.2024.e29774. (PMID: 10.1016/j.heliyon.2024.e297743869971311063421)
      Cheng D, Feng Y, Liu Y, Xue J, Li Z (2019) Dynamics of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. J Environ Manage 230:102–109. https://doi.org/10.1016/j.jenvman.2018.09.074. (PMID: 10.1016/j.jenvman.2018.09.07430278273)
      Chouhan GK, Verma JP, Jaiswal DK, Mukherjee A, Singh S, de Araujo Pereira AP, Liu H, Abd Allah EF, Singh BK (2021) Phytomicrobiome for promoting sustainable agriculture and food security: opportunities, challenges, and solutions. Microbiol Res 248:126763. https://doi.org/10.1016/j.micres.2021.126763. (PMID: 10.1016/j.micres.2021.12676333892241)
      Christou A, Papadavid G, Dalias P, Fotopoulos V, Michael C, Bayona JM, Piña B, Fatta-Kassinos D (2019) Ranking of crop plants according to their potential to uptake and accumulate contaminants of emerging concern. Environ Res 170:422–432. https://doi.org/10.1016/j.envres.2018.12.048. (PMID: 10.1016/j.envres.2018.12.04830623890)
      Colgan P, Rieke EL, Nadeem K, Moorman TB, Soupir ML, Howe A, Ricker N (2022) Impact of swine and cattle manure treatment on the microbial composition and resistome of soil and drainage water. Microorganisms 11(1):17. https://doi.org/10.3390/microorganisms11010017. (PMID: 10.3390/microorganisms11010017366773099865870)
      Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197. https://doi.org/10.1007/s00248-011-9883-y. (PMID: 10.1007/s00248-011-9883-y21625971)
      Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A (2021) The plant endosphere world - bacterial life within plants. Environ Microbiol 23:1812–1829. https://doi.org/10.1111/1462-2920.15240. (PMID: 10.1111/1462-2920.1524032955144)
      Congilosi JL, Wallace JS, Neher TP, Howe A, Soupir ML, Aga DS (2022) Co-occurrence of antimicrobials and metals as potential drivers of antimicrobial resistance in swine farms. Front Environ Sci. https://doi.org/10.3389/fenvs.2022.1018739. (PMID: 10.3389/fenvs.2022.1018739)
      Contreras-Pérez M, Hernández-Salmerón J, Rojas-Solís D, Rocha-Granados C, Orozco-Mosqueda MdC, Parra-Cota FI, de los Santos-Villalobos S, Santoyo G (2019) Draft genome analysis of the endophyte, Bacillus toyonensis COPE52, a blueberry (Vaccinium spp. var. Biloxi) growth-promoting bacterium. 3 Biotech 9:370. https://doi.org/10.1007/s13205-019-1911-5. (PMID: 10.1007/s13205-019-1911-5315883946761212)
      Corredor M, Muñoz-Gómez A (2021) Pharmaceutical antibiotics at a significant level in nature: from hospitals, livestock, and plants to soil, water, and sea. IntechOpen. https://doi.org/10.5772/intechopen.95368. (PMID: 10.5772/intechopen.95368)
      Czatzkowska M, Wolak I, Harnisz M, Korzeniewska E (2022) Impact of anthropogenic activities on the dissemination of ARGs in the environment - a review. Int J Environ Res Public Health 19:12853. https://doi.org/10.3390/ijerph191912853. (PMID: 10.3390/ijerph191912853362321529564893)
      Devarajan AK, Truu M, Gopalasubramaniam SK, Muthukrishanan G, Truu J (2022) Application of data integration for rice bacterial strain selection by combining their osmotic stress response and plant growth-promoting traits. Front Microbiol 13:1058772. https://doi.org/10.3389/fmicb.2022.1058772. (PMID: 10.3389/fmicb.2022.1058772365904009797599)
      Ding D, Wang B, Zhang X, Zhang J, Zhang H, Liu X, Gao Z, Yu Z (2023) The spread of antibiotic resistance to humans and potential protection strategies. Ecotox Environ Safe 254:114734. https://doi.org/10.1016/j.ecoenv.2023.114734. (PMID: 10.1016/j.ecoenv.2023.114734)
      Dong C-J, Wang L-L, Li Q, Shang Q-M (2019) Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE 14:e0223847. https://doi.org/10.1371/journal.pone.0223847. (PMID: 10.1371/journal.pone.0223847317030746839845)
      Dragojević M, Stankovic N, Djokic L, Raičević V, Jovičić-Petrović J (2023) Endorhizosphere of indigenous succulent halophytes: a valuable resource of plant growth promoting bacteria. Environ Microbiome 18:20. https://doi.org/10.1186/s40793-023-00477-x. (PMID: 10.1186/s40793-023-00477-x3693426510024849)
      Dubuc J, Fauteux V, Villettaz-Robichaud M, Roy JP, Rousseau M, Buczinski S (2021) Short communication: efficacy of a second intrauterine cephapirin infusion for the treatment of purulent vaginal discharge and endometritis in postpartum dairy cows. J Dairy Sci 104:3559–3563. https://doi.org/10.3168/jds.2020-19537. (PMID: 10.3168/jds.2020-1953733358808)
      Dungan RS, McKinney CW, Leytem AB (2018) Tracking antibiotic resistance genes in soil irrigated with dairy wastewater. Sci Total Environ 635:1477–1483. https://doi.org/10.1016/j.scitotenv.2018.04.020. (PMID: 10.1016/j.scitotenv.2018.04.02029710598)
      Eisenreich W, Rudel T, Heesemann J, Goebel W (2022) Link between antibiotic persistence and antibiotic resistance in bacterial pathogens. Front Cell Infect Microbiol 12:900848. https://doi.org/10.3389/fcimb.2022.900848. (PMID: 10.3389/fcimb.2022.900848359282059343593)
      Eke P, Kumar A, Sahu KP, Wakam LN, Sheoran N, Ashajyothi M, Patel A, Fekam FB (2019) Endophytic bacteria of desert cactus (Euphorbia Trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L). Microbiol Res 228:126302. https://doi.org/10.1016/j.micres.2019.126302. (PMID: 10.1016/j.micres.2019.12630231442862)
      Elkomy AAA, Elsayed F, Elbadawy M, Aboubakr M, Aboelftouh E (2019) Oral bioavailability of cefadroxil in healthy broiler chickens. World J pharm pharm sci 8:9. https://doi.org/10.20959/wjpps20199-14706. (PMID: 10.20959/wjpps20199-14706)
      Ezugworie FN, Igbokwe VC, Onwosi CO (2021) Proliferation of antibiotic-resistant microorganisms and associated genes during composting: an overview of the potential impacts on public health, management and future. Sci Total Environ 784:147191. https://doi.org/10.1016/j.scitotenv.2021.147191. (PMID: 10.1016/j.scitotenv.2021.14719133905939)
      Fang H, Han L, Zhang H, Long Z, Cai L, Yu Y (2018) Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. J Hazard Mater 357:53–62. https://doi.org/10.1016/j.jhazmat.2018.05.066. (PMID: 10.1016/j.jhazmat.2018.05.06629860105)
      Farhaoui A, Adadi A, Tahiri A, El Alami N, Khayi S, Mentag R, Ezrari S, Radouane N, Mokrini F, Belabess Z, Lahlali R (2022) Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Sclerotiorum rolfsii diseases on sugar beet (Beta vulgaris L). Physiol Mol Plant Pathol 119:101829. https://doi.org/10.1016/j.pmpp.2022.101829. (PMID: 10.1016/j.pmpp.2022.101829)
      Flores A, Diaz-Zamora JT, Orozco-Mosqueda MC, Chávez A, de Los Santos-Villalobos S, Valencia-Cantero E, Santoyo G (2020) Bridging genomics and field research: draft genome sequence of Bacillus thuringiensis CR71, an endophytic bacterium that promotes plant growth and fruit yield in Cucumis sativus L. 3 Biotech 10:1–7. https://doi.org/10.1007/s13205-020-02209-1. (PMID: 10.1007/s13205-020-02209-1)
      Gao JL, Khan MS, Sun YC, Xue J, Du Y, Yang C, Chebotar VK, Tikunov VS, Rubanov IN, Chen X, Zhang X (2022) Characterization of an endophytic antagonistic bacterial strain Bacillus halotolerans LBG-1-13 with multiple plant growth-promoting traits, stress tolerance, and its effects on lily growth. Biomed Res Int 2022:5960004. https://doi.org/10.1155/2022/5960004. (PMID: 10.1155/2022/5960004360601409436562)
      Gao Y, Luo W, Zhang H, Chen Y, Li Z, Wei G, Chen W (2023) Enrichment of antibiotic resistance genes in roots is related to specific bacterial hosts and soil properties in two soil–plant systems. Sci Total Environ 886:163933. https://doi.org/10.1016/j.scitotenv.2023.163933. (PMID: 10.1016/j.scitotenv.2023.16393337164096)
      García-Valverde M, Aragonés AM, Andújar JAS, García MDG, Martínez-Bueno MJ, Fernández-Alba AR (2023) Long-term effects on the agroecosystem of using reclaimed water on commercial crops. Sci Total Environ 859:160462. https://doi.org/10.1016/j.scitotenv.2022.160462. (PMID: 10.1016/j.scitotenv.2022.16046236435246)
      Geng J, Liu X, Wang J, Li S (2022) Accumulation and risk assessment of antibiotics in edible plants grown in contaminated farmlands: a review. Sci Total Environ 853:158616. https://doi.org/10.1016/j.scitotenv.2022.158616. (PMID: 10.1016/j.scitotenv.2022.15861636089029)
      Gentile A, Di Stasio L, Oliva G, Vigliotta G, Cicatelli A, Guarino F, Nissim WG, Labra M, Castiglione S (2024) Antibiotic resistance in urban soils: dynamics and mitigation strategies. Environ Res 263:120120. https://doi.org/10.1016/j.envres.2024.120120. (PMID: 10.1016/j.envres.2024.12012039384008)
      Ghaly TM, Gillings MR (2022) New perspectives on mobile genetic elements: a paradigm shift for managing the antibiotic resistance crisis. Philos Trans R Soc Lond B Biol Sci 377:20200462. https://doi.org/10.1098/rstb.2020.0462. (PMID: 10.1098/rstb.2020.046234839710)
      Gillet Y, Lorrot M, Minodier P, Ouziel A, Haas H, Cohen R (2023) Antimicrobial treatment of skin and soft tissue infections. Infect Dis Now 53:104787. https://doi.org/10.1016/j.idnow.2023.104787. (PMID: 10.1016/j.idnow.2023.10478737734714)
      Gomez MY, Schroeder MM, Chieb M, McLain NK, Gachomo EW (2023) Bradyrhizobium japonicum IRAT FA3 promotes salt tolerance through jasmonic acid priming in Arabidopsis thaliana. BMC Plant Biol 23:60. https://doi.org/10.1186/s12870-022-03977-z. (PMID: 10.1186/s12870-022-03977-z367103219885586)
      Gu J, Chen C, Huang X, Mo J, Xie Q, Zeng Q (2021) Occurrence and risk assessment of tetracycline antibiotics in soils and vegetables from vegetable fields in Pearl River Delta, South China. Sci Total Environ 776:145959. https://doi.org/10.1016/j.scitotenv.2021.145959. (PMID: 10.1016/j.scitotenv.2021.145959)
      Guo A, Gu J, Wang X, Zhang R, Yin Y, Sun W, Tuo X, Zhang L (2017) Effects of superabsorbent polymers on the abundances of antibiotic resistance genes, mobile genetic elements, and the bacterial community during swine manure composting. Bioresour Technol 244:658–663. https://doi.org/10.1016/j.biortech.2017.08.016. (PMID: 10.1016/j.biortech.2017.08.01628813691)
      Guo Y, Qiu T, Gao M, Sun Y, Cheng S, Gao H, Wang X (2021) Diversity and abundance of antibiotic resistance genes in rhizosphere soil and endophytes of leafy vegetables: focusing on the effect of the vegetable species. J Hazard Mater 415:125595. https://doi.org/10.1016/j.jhazmat.2021.125595. (PMID: 10.1016/j.jhazmat.2021.12559534088171)
      Habiba Ue, Khan A, Mmbaga EJ, Green IR, Asaduzzaman M (2023) Use of antibiotics in poultry and poultry farmers- a cross-sectional survey in Pakistan. Front Public Health 11:11:1154668. https://doi.org/10.3389/fpubh.2023.1154668. (PMID: 10.3389/fpubh.2023.115466837497033)
      Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, Botha FC, Anderson IC, Singh BK (2018) Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol 20:124–140. https://doi.org/10.1111/1462-2920.14031. (PMID: 10.1111/1462-2920.1403129266641)
      Han X-M, Hu H-W, Chen Q-L, Yang L-Y, Li H-L, Zhu Y-G, Li X-Z, Ma Y-B (2018) Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biol Biochem 126:91–102. https://doi.org/10.1016/j.soilbio.2018.08.018. (PMID: 10.1016/j.soilbio.2018.08.018)
      Han Y, Zhou ZC, Zhu L, Wei YY, Feng WQ, Xu L, Liu Y, Lin ZJ, Shuai XY, Zhang ZJ, Chen H (2019) The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes. Environ Sci Pollut Res Int 26:28352–28360. https://doi.org/10.1007/s11356-019-05673-2. (PMID: 10.1007/s11356-019-05673-231372954)
      Han X-M, Hu H-W, Li J-Y, Li H-L, He F, Sang W-C, Liu Y-H, Ma Y-B (2022) Long-term application of swine manure and sewage sludge differently impacts antibiotic resistance genes in soil and phyllosphere. Geoderma 411:115698. https://doi.org/10.1016/j.geoderma.2022.115698. (PMID: 10.1016/j.geoderma.2022.115698)
      Hanna N, Sun P, Sun Q, Li X, Yang X, Ji X, Zou H, Ottoson J, Nilsson LE, Berglund B, Dyar OJ, Tamhankar AJ, Stålsby Lundborg C (2018) Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environ Int 114:131–142. https://doi.org/10.1016/j.envint.2018.02.003. (PMID: 10.1016/j.envint.2018.02.00329501851)
      Hansima MACK, Zvomuya F, Amarakoon I (2023) Fate of veterinary antimicrobials in Canadian prairie soils – a critical review. Sci Total Environ 892:164387. https://doi.org/10.1016/j.scitotenv.2023.164387. (PMID: 10.1016/j.scitotenv.2023.16438737257623)
      He Y, Yuan Q, Mathieu J, Stadler L, Senehi N, Sun R, Alvarez PJJ (2020) Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 3:4. https://doi.org/10.1038/s41545-020-0051-0. (PMID: 10.1038/s41545-020-0051-0)
      Helal DS, El-Khawas H, Elsayed TR (2022) Molecular characterization of endophytic and ectophytic plant growth promoting bacteria isolated from tomato plants (Solanum lycopersicum L.) grown in different soil types. J Genet Eng Biotechnol 20:79. https://doi.org/10.1186/s43141-022-00361-0. (PMID: 10.1186/s43141-022-00361-0356087119130443)
      Hodiamont CJ, van den Broek AK, de Vroom SL, Prins JM, Mathôt RAA, van Hest RM (2022) Clinical pharmacokinetics of gentamicin in various patient populations and consequences for optimal dosing for gram-negative infections: an updated review. Clin Pharmacokinet 61:1075–1094. https://doi.org/10.1007/s40262-022-01143-0. (PMID: 10.1007/s40262-022-01143-0357540719349143)
      Hu HW, Wang JT, Singh BK, Liu YR, Chen YL, Zhang YJ, He JZ (2018a) Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ Microbiol 20:3186–3200. https://doi.org/10.1111/1462-2920.14248. (PMID: 10.1111/1462-2920.1424829687575)
      Hu J, Jiang J, Wang N (2018b) Control of Citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 108:186–195. https://doi.org/10.1094/phyto-05-17-0175-r. (PMID: 10.1094/phyto-05-17-0175-r28945516)
      Huang L, Xu Y-b, Xu J-X, Ling J, Zheng L, Zhou XB, Xie G (2019a) Dissemination of antibiotic resistance genes (ARGs) by rainfall on a cyclic economic breeding livestock farm. Int Biodeter Biodeger 138:114–221. https://doi.org/10.1016/j.ibiod.2019.01.009. (PMID: 10.1016/j.ibiod.2019.01.009)
      Huang L, Xu Y, Xu J, Ling J, Zheng L, Zhou X, Xie G (2019b) Dissemination of antibiotic resistance genes (ARGs) by rainfall on a cyclic economic breeding livestock farm. Int Biodeterior Biodegrad 138:114–121. https://doi.org/10.1016/j.ibiod.2019.01.009. (PMID: 10.1016/j.ibiod.2019.01.009)
      Hunt JP, McKnite AM, Green DJ, Whelan AJ, Imburgia CE, Watt KM (2023) Interaction of ceftazidime and clindamycin with extracorporeal life support. J Infect Chemother 29:1119–1125. https://doi.org/10.1016/j.jiac.2023.08.007. (PMID: 10.1016/j.jiac.2023.08.0073757297911160944)
      Islam T, Haque MA, Barai HR, Istiaq A, Kim J-J (2024) Antibiotic resistance in plant pathogenic bacteria: recent data and environmental impact of unchecked use and the potential of biocontrol agents as an eco-friendly alternative. Plants 13:1135. https://doi.org/10.3390/plants13081135. (PMID: 10.3390/plants130811353867454411054394)
      Jeong D-W, Lee B, Heo S, Oh Y, Heo G, Lee J-H (2020) Two genes involved in clindamycin resistance of Bacillus licheniformis and Bacillus paralicheniformis identified by comparative genomic analysis. PLoS ONE 15:e0231274. https://doi.org/10.1371/journal.pone.0231274. (PMID: 10.1371/journal.pone.0231274322718287144989)
      Jiang Q, Li H, Wan K, Ye C, Yu X (2023) Quantification and antibiotic resistance risk assessment of chlorination-residual viable/VBNC Escherichia coli and Enterococcus in on-site hospital wastewater treatment system. Sci Total Environ 872:162139. https://doi.org/10.1016/j.scitotenv.2023.162139. (PMID: 10.1016/j.scitotenv.2023.16213936773911)
      Jin C, Wei S, Sun R, Zou W, Zhang X, Zhou Q, Liu R, Huang L (2020) The forms, distribution, and risk assessment of sulfonamide antibiotics in the manure–soil–vegetable system of feedlot livestock. B Environ Contam Tox 105:790–797. https://doi.org/10.1007/s00128-020-03010-9. (PMID: 10.1007/s00128-020-03010-9)
      Kampouris ID, Agrawal S, Orschler L, Cacace D, Kunze S, Berendonk TU, Klümper U (2021) Antibiotic resistance gene load and irrigation intensity determine the impact of wastewater irrigation on antimicrobial resistance in the soil microbiome. Water Res 193:116818. https://doi.org/10.1016/j.watres.2021.116818. (PMID: 10.1016/j.watres.2021.11681833571903)
      Kang W, Zhang Y-J, Shi X, He J-Z, Hu H-W (2018) Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil. Environ Sci Pollut Res 25:29314–29324. https://doi.org/10.1007/s11356-018-2978-y. (PMID: 10.1007/s11356-018-2978-y)
      Khan A, Bano A, Khan RA, Khan N (2023) Role of PGPR in suppressing the growth of Macrophomina phaseolina by regulating antioxidant enzymes and secondary metabolites in Vigna radiata. S Afr J Bot 158:443–451. https://doi.org/10.1016/j.sajb.2023.05.040 . L.) R. Wilczek. (PMID: 10.1016/j.sajb.2023.05.040)
      Kim J-W, Hong Y-K, Yang J-E, Kwon O-K, Kim S-C (2022) Bioaccumulation and mass balance analysis of veterinary antibiotics in an agricultural environment. Toxics 10:213. https://doi.org/10.3390/toxics10050213. (PMID: 10.3390/toxics10050213356226279147115)
      Krstić Tomić T, Atanasković I, Nikolić I, Joković N, Stević T, Stanković S, Berić T, Lozo J (2023) Culture-dependent and metabarcoding characterization of the sugar beet (Beta vulgaris L.) microbiome for high-yield isolation of bacteria with plant growth-promoting traits. Microorganisms 11(6):1538. https://doi.org/10.3390/microorganisms11061538. (PMID: 10.3390/microorganisms110615383737504010302512)
      Krzyżanowska DM, Jabłońska M, Kaczyński Z, Czerwicka-Pach M, Macur K, Jafra S (2023) Host-adaptive traits in the plant-colonizing Pseudomonas donghuensis P482 revealed by transcriptomic responses to exudates of tomato and maize. Sci Rep 13:9445. https://doi.org/10.1038/s41598-023-36494-6. (PMID: 10.1038/s41598-023-36494-63729615910256816)
      Kumar A, Dubey A (2020) Rhizosphere microbiome: engineering bacterial competitiveness for enhancing crop production. J Adv Res 24:337–352. https://doi.org/10.1016/j.jare.2020.04.014. (PMID: 10.1016/j.jare.2020.04.014324618107240055)
      Kumari P, Meena M, Upadhyay RS (2018) Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatal Agric Biotechnol 16:155–162. https://doi.org/10.1016/j.bcab.2018.07.029. (PMID: 10.1016/j.bcab.2018.07.029)
      Lan L, Kong X, Sun H, Li C, Liu D (2019) High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. J Environ Manage 231:439–445. https://doi.org/10.1016/j.jenvman.2018.10.073. (PMID: 10.1016/j.jenvman.2018.10.07330368154)
      Li H, Li B, Zhang Z, Zhu C, Tian Y, Ye J (2018) Evolution of microbial communities during electrokinetic treatment of antibiotic-polluted soil. Ecotox Environ Safe 148:842–850. https://doi.org/10.1016/j.ecoenv.2017.11.057. (PMID: 10.1016/j.ecoenv.2017.11.057)
      Li W, Dai X, Pu E, Bian H, Chen Z, Zhang X, Guo Z, Li P, Li H, Yong Y, Wang C, Zhang Y, Han L (2020) HLB-MCX-based solid-phase extraction combined with liquid chromatography–tandem mass spectrometry for the simultaneous determination of four agricultural antibiotics (kasugamycin, validamycin a, ningnanmycin, and polyoxin b) residues in plant-origin foods. J Agric Food Chem 68:14025–14037. https://doi.org/10.1021/acs.jafc.0c04620. (PMID: 10.1021/acs.jafc.0c0462033190501)
      Li H, Zheng X, Tan L, Shao Z, Cao H, Xu Y (2022a) The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. Environ Res 203:111884. https://doi.org/10.1016/j.envres.2021.111884. (PMID: 10.1016/j.envres.2021.11188434400159)
      Li Y, Sallach JB, Zhang W, Boyd SA, Li H (2022b) Characterization of plant accumulation of pharmaceuticals from soils with their concentration in soil pore water. Environ Sci Technol 56:9346–9355. https://doi.org/10.1021/acs.est.2c00303. (PMID: 10.1021/acs.est.2c0030335738923)
      Li M, Yang L, Yen H, Zhao F, Wang X, Zhou T, Feng Q, Chen L (2023a) Occurrence, spatial distribution and ecological risks of antibiotics in soil in urban agglomeration. J Environ Sci 125:678–690. https://doi.org/10.1016/j.jes.2022.03.029. (PMID: 10.1016/j.jes.2022.03.029)
      Li Y, Liu H, Wang J, Xing W, Fan H, Li B (2023b) Impacts of reclaimed water irrigation on the accumulation of pharmaceutical and personal care products in soil and cereals. Irrig Sci 42:419–430. https://doi.org/10.1007/s00271-023-00868-5. (PMID: 10.1007/s00271-023-00868-5)
      Li Y, Kong F, Li S, Wang J, Hu J, Chen S, Chen Q, Li Y, Ha X, Sun W (2023c) Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. J Hazard Mater 456:131706. https://doi.org/10.1016/j.jhazmat.2023.131706. (PMID: 10.1016/j.jhazmat.2023.13170637247491)
      Li T, Tao S, Ma M, Liu S, Shen M, Zhang H (2024) Is the application of organic fertilizers becoming an undeniable source of microplastics and resistance genes in agricultural systems? Sci Total Environ 912:169571. https://doi.org/10.1016/j.scitotenv.2023.169571. (PMID: 10.1016/j.scitotenv.2023.16957138142997)
      Lin Z, Yuan T, Zhou L, Cheng S, Qu X, Lu P, Feng Q (2021) Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. Environ Geochem Health 43:1741–1758. https://doi.org/10.1007/s10653-020-00759-0. (PMID: 10.1007/s10653-020-00759-033123928)
      Liu X, Liang C, Liu X, Zhao F, Han C (2020) Occurrence and human health risk assessment of pharmaceuticals and personal care products in real agricultural systems with long-term reclaimed wastewater irrigation in Beijing, China. Ecotox Environ Safe 190:110022. https://doi.org/10.1016/j.ecoenv.2019.110022. (PMID: 10.1016/j.ecoenv.2019.110022)
      Liu Y, Neal AL, Zhang X, Fan H, Liu H, Li Z (2022) Cropping system exerts stronger influence on antibiotic resistance gene assemblages in greenhouse soils than reclaimed wastewater irrigation. J Hazard Mater 425:128046. https://doi.org/10.1016/j.jhazmat.2021.128046. (PMID: 10.1016/j.jhazmat.2021.12804634986574)
      Liu S, Han Z, Zhu D, Luan X, Deng L, Dong L, Yang M, Zhang Y (2024a) Field-based evidence for the enrichment of intrinsic antibiotic resistome stimulated by plant-derived fertilizer in agricultural soil. J Environ Sci 135:728–740. https://doi.org/10.1016/j.jes.2022.08.009. (PMID: 10.1016/j.jes.2022.08.009)
      Liu Z-T, Ma R-A, Zhu D, Konstantinidis KT, Zhu Y-G, Zhang S-Y (2024b) Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome. Nat Commun 15:5168. https://doi.org/10.1038/s41467-024-49165-5. (PMID: 10.1038/s41467-024-49165-53888644711183072)
      Lorrot M, Gillet Y, Basmaci R, Bréhin C, Dommergues M-A, Favier M, Jeziorski E, Panetta L, Pinquier D, Ouziel A, Grimprel E, Cohen R (2023) Antibiotic therapy for osteoarticular infections in 2023: proposals from the pediatric infectious pathology group (GPIP). Infect Dis Now 53:104789. https://doi.org/10.1016/j.idnow.2023.104789. (PMID: 10.1016/j.idnow.2023.10478937741341)
      Lu J, Yuan Q, Wang X, Gong L, An X, Liu J (2022) Antibiotics and microbial community-induced antibiotic-resistant genes distribution in soil and sediment in the eastern coastline of China. Environ Monit Assess 194:607. https://doi.org/10.1007/s10661-022-10295-2. (PMID: 10.1007/s10661-022-10295-235867174)
      Ma X, Li X-Y, Liu J-W (2024) Demographic and clinical features of nontuberculous mycobacteria infection resulting from cosmetic procedures: a systematic review. Int J Infect Dis 149:107259. https://doi.org/10.1016/j.ijid.2024.107259. (PMID: 10.1016/j.ijid.2024.10725939395754)
      Mahdi I, Hafidi M, Allaoui A, Biskri L (2021) Halotolerant endophytic bacterium Serratia rubidaea ED1 enhances phosphate solubilization and promotes seed germination. Agriculture 11:224. https://doi.org/10.3390/agriculture11030224. (PMID: 10.3390/agriculture11030224)
      Mahdi I, Fahsi N, Hijri M, Sobeh M (2022) Antibiotic resistance in plant growth promoting bacteria: a comprehensive review and future perspectives to mitigate potential gene invasion risks. Front Microbiol. https://doi.org/10.3389/fmicb.2022.999988. (PMID: 10.3389/fmicb.2022.999988362046279530320)
      Mahjoub O, Mauffret A, Michel C, Chmingui W (2022) Use of groundwater and reclaimed water for agricultural irrigation: farmers’ practices and attitudes and related environmental and health risks. Chemosphere 295:133945. https://doi.org/10.1016/j.chemosphere.2022.133945. (PMID: 10.1016/j.chemosphere.2022.13394535157888)
      Mahmud K, Missaoui A, Lee K, Ghimire B, Presley HW, Makaju S (2021) Rhizosphere microbiome manipulation for sustainable crop production. Curr Plant Biol 27:100210. https://doi.org/10.1016/j.cpb.2021.100210. (PMID: 10.1016/j.cpb.2021.100210)
      Matamoros V, Casas ME, Mansilla S, Tadić Đ, Cañameras N, Carazo N, Portugal J, Piña B, Díez S, Bayona JM (2022a) Occurrence of antibiotics in lettuce (Lactuca sativa L.) and Radish (Raphanus sativus L.) following organic soil fertilisation under plot-scale conditions: crop and human health implications. J Hazard Mater 436:129044. https://doi.org/10.1016/j.jhazmat.2022.129044. (PMID: 10.1016/j.jhazmat.2022.12904435525220)
      Matamoros V, Casas ME, Pastor E, Tadić Đ, Cañameras N, Carazo N, Bayona JM (2022b) Effects of tetracycline, sulfonamide, fluoroquinolone, and lincosamide load in pig slurry on lettuce: agricultural and human health implications. Environ Res 215:114237. https://doi.org/10.1016/j.envres.2022.114237. (PMID: 10.1016/j.envres.2022.11423736084673)
      Mehdi Y, Létourneau-Montminy M-P, Gaucher M-L, Chorfi Y, Suresh G, Rouissi T, Brar SK, Côté C, Ramirez AA, Godbout S (2018) Use of antibiotics in broiler production: global impacts and alternatives. Anim Nutr 4:170–178. https://doi.org/10.1016/j.aninu.2018.03.002. (PMID: 10.1016/j.aninu.2018.03.002301407566103476)
      Mengistu AA (2020) Endophytes: colonization, behaviour, and their role in defense mechanism. Int J Microbiol 2020:6927219. https://doi.org/10.1155/2020/6927219. (PMID: 10.1155/2020/6927219328020737414354)
      Monteiro JF, Hahn SR, Gonçalves J, Fresco P (2018) Vancomycin therapeutic drug monitoring and population pharmacokinetic models in special patient subpopulations. Pharmacol Res Perspect 6:e00420. https://doi.org/10.1002/prp2.420. (PMID: 10.1002/prp2.420301560056113434)
      Moon K, Jeon JH, Kang I, Park KS, Lee K, Cha C-J, Lee SH, Cho J-C (2020) Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. Microbiome 8:75. https://doi.org/10.1186/s40168-020-00863-4. (PMID: 10.1186/s40168-020-00863-4324821657265639)
      Mortezaei Y, Demirer GN, Williams MR (2024) Fate of intracellular and extracellular antibiotic resistance genes in sewage sludge by full-scale anaerobic digestion. Sci Total Environ 951:175760. https://doi.org/10.1016/j.scitotenv.2024.175760. (PMID: 10.1016/j.scitotenv.2024.17576039182790)
      Nayiga S, Kayendeke M, Nabirye C, Willis LD, Chandler CIR, Staedke SG (2020) Use of antibiotics to treat humans and animals in Uganda: a cross-sectional survey of households and farmers in rural, urban and peri-urban settings. JAC-Antimicrob Resist. https://doi.org/10.1093/jacamr/dlaa082. (PMID: 10.1093/jacamr/dlaa082342230378210029)
      Niem JM, Billones-Baaijens R, Stodart B, Savocchia S (2020) Diversity profiling of grapevine microbial endosphere and antagonistic potential of endophytic pseudomonas against grapevine trunk diseases. Front Microbiol. https://doi.org/10.3389/fmicb.2020.00477. (PMID: 10.3389/fmicb.2020.00477322738717113392)
      Nordstedt NP, Jones ML (2021) Genomic analysis of Serratia plymuthica MBSA-MJ1: a plant growth promoting rhizobacteria that improves water stress tolerance in greenhouse ornamentals. Front Microbiol. https://doi.org/10.3389/fmicb.2021.653556. (PMID: 10.3389/fmicb.2021.653556349252968675082)
      Oliver ME, Hinks TSC (2021) Azithromycin in viral infections. Rev Med Virol 31:e2163. https://doi.org/10.1002/rmv.2163. (PMID: 10.1002/rmv.216332969125)
      Onalenna O, Rahube TO (2022) Assessing bacterial diversity and antibiotic resistance dynamics in wastewater effluent-irrigated soil and vegetables in a microcosm setting. Heliyon 8:e09089. https://doi.org/10.1016/j.heliyon.2022.e09089. (PMID: 10.1016/j.heliyon.2022.e09089353094048924307)
      Orozco-Mosqueda MC, Santoyo G (2021) Plant-microbial endophytes interactions: scrutinizing their beneficial mechanisms from genomic explorations. Curr Plant Biol 25:100189. https://doi.org/10.1016/j.cpb.2020.100189. (PMID: 10.1016/j.cpb.2020.100189)
      Pan Z, Yang S, Zhao L, Li X, Weng L, Sun Y, Li Y (2021) Temporal and spatial variability of antibiotics in agricultural soils from Huang-Huai-Hai Plain, northern China. Chemosphere 272:129803. https://doi.org/10.1016/j.chemosphere.2021.129803. (PMID: 10.1016/j.chemosphere.2021.12980335534955)
      Pan M, Zhang H, Luo L-W, Yau P-C (2023) Exploring the potential of co-application of sewage sludge, Chinese medicinal herbal residues and biochar in minimizing human exposure to antibiotics contamination in edible crops. Sustainability 15:2980. https://doi.org/10.3390/su15042980. (PMID: 10.3390/su15042980)
      Papich MG, Lindeman C (2018) Cephalexin susceptibility breakpoint for veterinary isolates: clinical laboratory standards institute revision. J Vet Diagn Invest: Off Publ Am Assoc Vet Lab Diagn Inc 30:113–120. https://doi.org/10.1177/1040638717742434. (PMID: 10.1177/1040638717742434)
      Petrovich ML, Zilberman A, Kaplan A, Eliraz GR, Wang Y, Langenfeld K, Duhaime M, Wigginton K, Poretsky R, Avisar D, Wells GF (2020) Microbial and viral communities and their antibiotic resistance genes throughout a hospital wastewater treatment system. Front Microbiol 11:153. https://doi.org/10.3389/fmicb.2020.00153. (PMID: 10.3389/fmicb.2020.00153321401417042388)
      Phour M, Sehrawat A, Sindhu SS, Glick BR (2020) Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 241:126589. https://doi.org/10.1016/j.micres.2020.126589. (PMID: 10.1016/j.micres.2020.12658932927204)
      Polianciuc SI, Gurzău AE, Kiss B, Ştefan MG, Loghin F (2020) Antibiotics in the environment: causes and consequences. Med Pharm Rep 93:231–240. https://doi.org/10.15386/mpr-1742. (PMID: 10.15386/mpr-1742328328877418837)
      Pu C, Liu H, Ding G, Sun Y, Yu X, Chen J, Ren J, Gong X (2018) Impact of direct application of biogas slurry and residue in fields: in situ analysis of antibiotic resistance genes from pig manure to fields. J Hazard Mater 344:441–449. https://doi.org/10.1016/j.jhazmat.2017.10.031. (PMID: 10.1016/j.jhazmat.2017.10.03129096257)
      Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, Chin CF, Sudesh K (2022) Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci 170:106103. https://doi.org/10.1016/j.ejps.2021.106103. (PMID: 10.1016/j.ejps.2021.10610334936936)
      Qian X, Sun W, Gu J, Wang XJ, Sun JJ, Yin YN, Duan ML (2016) Variable effects of oxytetracycline on antibiotic resistance gene abundance and the bacterial community during aerobic composting of cow manure. J Hazard Mater 315:61–69. https://doi.org/10.1016/j.jhazmat.2016.05.002. (PMID: 10.1016/j.jhazmat.2016.05.00227179201)
      Qiu T, Wu D, Zhang L, Zou D, Sun Y, Gao M, Wang X (2021) A comparison of antibiotics, antibiotic resistance genes, and bacterial community in broiler and layer manure following composting. Environ Sci Pollut Res 28:14707–14719. https://doi.org/10.1007/s11356-020-11469-6. (PMID: 10.1007/s11356-020-11469-6)
      Qiu J, Chen Y, Feng Y, Li X, Xu J, Jiang J (2023) Adaptation of rhizosphere microbial communities to continuous exposure to multiple residual antibiotics in vegetable farms. Int J Environ Res Public Health 20:3137. https://doi.org/10.3390/ijerph20043137. (PMID: 10.3390/ijerph20043137368338289958589)
      Rahman MM, Shan J, Yang P, Shang X, Xia Y, Yan X (2018) Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environ Pollut 240:368–377. https://doi.org/10.1016/j.envpol.2018.04.135. (PMID: 10.1016/j.envpol.2018.04.13529753245)
      Ren J, Shi H, Liu J, Zheng C, Lu G, Hao S, Jin Y, He C (2023) Occurrence, source apportionment and ecological risk assessment of thirty antibiotics in farmland system. J Environ Manage 335:117546. https://doi.org/10.1016/j.jenvman.2023.117546. (PMID: 10.1016/j.jenvman.2023.11754636848802)
      Roman-Reyna V, Pinili D, Borja FN, Quibod IL, Groen SC, Alexandrov N, Mauleon R, Oliva R (2020) Characterization of the leaf microbiome from whole-genome sequencing data of the 3000 rice genomes project. Rice 13:72. https://doi.org/10.1186/s12284-020-00432-1. (PMID: 10.1186/s12284-020-00432-1330347587547056)
      Rubio-Santiago J, Hernández-Morales A, Rolón-Cárdenas GA, Arvizu-Gómez JL, Soria-Guerra RE, Carranza-Álvarez C, Rubio-Salazar JE, Rosales-Loredo S, Pacheco-Aguilar JR, Macías-Pérez JR, Aldaba-Muruato LR, Vázquez-Martínez J (2023) Characterization of endophytic bacteria isolated from Typha latifolia and their effect in plants exposed to either Pb or Cd. Plants (Basel). https://doi.org/10.3390/plants12030498. (PMID: 10.3390/plants1203049836771585)
      Sagar P, Aseem A, Banjara SK, Veleri S (2023) The role of food chain in antimicrobial resistance spread and one health approach to reduce risks. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2023.110148. (PMID: 10.1016/j.ijfoodmicro.2023.11014836868045)
      Samreen, Ahmad I, Malak HA, Abulreesh HH (2021) Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Re 27:101–111. https://doi.org/10.1016/j.jgar.2021.08.001. (PMID: 10.1016/j.jgar.2021.08.001)
      Scaccia N, Vaz-Moreira I, Manaia CM (2021) The risk of transmitting antibiotic resistance through endophytic bacteria. Trends Plant Sci 26:1213–1226. https://doi.org/10.1016/j.tplants.2021.09.001. (PMID: 10.1016/j.tplants.2021.09.00134593300)
      Seitz VA, McGivern BB, Borton MA, Chaparro JM, Daly RA, Sheflin AM, Kresovich S, Shields L, Schipanski ME, Wrighton KC, Prenni JE (2021) Variation in root exudate composition influences soil microbiome membership and function. bioRxiv. https://doi.org/10.1101/2021.11.04.467385. (PMID: 10.1101/2021.11.04.467385336194927899456)
      Shen Y, Yang H, Lin Z, Chu L, Pan X, Wang Y, Liu W, Jin P, Miao W (2023) Screening of compound-formulated Bacillus and its effect on plant growth promotion. Front Plant Sci. https://doi.org/10.3389/fpls.2023.1174583. (PMID: 10.3389/fpls.2023.11745833828840510757923)
      Shi H, Hu X, Li W, Zhang J, Hu B, Lou L (2023) Soil component: a potential factor affecting the occurrence and spread of antibiotic resistance genes. Antibiotics 12:333. https://doi.org/10.3390/antibiotics12020333. (PMID: 10.3390/antibiotics12020333368302449952537)
      Song M, Peng K, Jiang L, Zhang D, Song D, Chen G, Xu H, Li Y, Luo C (2020) Alleviated antibiotic-resistant genes in the rhizosphere of agricultural soils with low antibiotic concentration. J Agric Food Chem 68:2457–2466. https://doi.org/10.1021/acs.jafc.9b06634. (PMID: 10.1021/acs.jafc.9b0663431995379)
      Song M, Song D, Jiang L, Zhang D, Sun Y, Chen G, Xu H, Mei W, Li Y, Luo C, Zhang G (2021) Large-scale biogeographical patterns of antibiotic resistome in the forest soils across China. J Hazard Mater 403:123990. https://doi.org/10.1016/j.jhazmat.2020.123990. (PMID: 10.1016/j.jhazmat.2020.12399033265028)
      Song M, Su Y, Jiang L, Peng K, Li J, Liu S, Sun Y, Chen C-E, Luo C (2023) Assessing the bioavailability of antibiotics in soil with the diffusive gradients in thin films (DGT). J Hazard Mater 448:130935. https://doi.org/10.1016/j.jhazmat.2023.130935. (PMID: 10.1016/j.jhazmat.2023.13093536860072)
      Sorinolu AJ, Tyagi N, Kumar A, Munir M (2021) Antibiotic resistance development and human health risks during wastewater reuse and biosolids application in agriculture. Chemosphere 265:129032. https://doi.org/10.1016/j.chemosphere.2020.129032. (PMID: 10.1016/j.chemosphere.2020.12903233293048)
      Spížek J, Řezanka T (2017) Lincosamides: chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol 133:20–28. https://doi.org/10.1016/j.bcp.2016.12.001. (PMID: 10.1016/j.bcp.2016.12.00127940264)
      Srichamnong W, Kalambaheti N, Woskie S, Kongtip P, Sirivarasai J, Matthews KR (2021) Occurrence of antibiotic-resistant bacteria on hydroponically grown butterhead lettuce (Lactuca sativa var. capitata). Food Sci Nutr 9:1460–1470. https://doi.org/10.1002/fsn3.2116. (PMID: 10.1002/fsn3.2116337474607958578)
      Stafylis C, Keith K, Mehta S, Tellalian D, Burian P, Millner C, Klausner JD (2021) Clinical efficacy of cefixime for the treatment of early syphilis. Clin Infect Dis 73:907–910. https://doi.org/10.1093/cid/ciab187. (PMID: 10.1093/cid/ciab187336409828423500)
      Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR (2018) Antibiotics, resistome and resistance mechanisms: a bacterial perspective. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02066. (PMID: 10.3389/fmicb.2018.02066302980546160567)
      Sun D, Jeannot K, Xiao Y, Knapp CW (2019) Editorial: horizontal gene transfer mediated bacterial antibiotic resistance. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01933. (PMID: 10.3389/fmicb.2019.01933320822686930176)
      Sun Y, Guo Y, Shi M, Qiu T, Gao M, Tian S, Wang X (2021) Effect of antibiotic type and vegetable species on antibiotic accumulation in soil-vegetable system, soil microbiota, and resistance genes. Chemosphere 263:128099. https://doi.org/10.1016/j.chemosphere.2020.128099. (PMID: 10.1016/j.chemosphere.2020.12809933297095)
      Sun J, Yuan Y, Cai L, Zeng M, Li X, Yao F, Chen W, Huang Y, Shafiq M, Xie Q, Zhang Q, Wong N, Wang Z, Jiao X (2023) Metagenomic evidence for antibiotics-driven co-evolution of microbial community, resistome and mobilome in hospital sewage. Environ Pollut 327:121539. https://doi.org/10.1016/j.envpol.2023.121539. (PMID: 10.1016/j.envpol.2023.12153937019259)
      Sura S, Larney FJ, Charest J, McAllister TA, Headley JV, Cessna AJ (2023) Veterinary antimicrobials in cattle feedlot environs and irrigation conveyances in a high-intensity agroecosystem in southern Alberta, Canada. Environ Sci Pollut Res Int 30:12235–12256. https://doi.org/10.1007/s11356-022-22889-x. (PMID: 10.1007/s11356-022-22889-x36107301)
      Szekeres E, Baricz A, Chiriac CM, Farkas A, Opris O, Soran M-L, Andrei A-S, Rudi K, Balcázar JL, Dragos N, Coman C (2017) Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ Pollut 225:304–315. https://doi.org/10.1016/j.envpol.2017.01.054. (PMID: 10.1016/j.envpol.2017.01.05428347610)
      Tadić Đ, Bleda Hernandez MJ, Cerqueira F, Matamoros V, Piña B, Bayona JM (2021) Occurrence and human health risk assessment of antibiotics and their metabolites in vegetables grown in field-scale agricultural systems. J Hazard Mater 401:123424. https://doi.org/10.1016/j.jhazmat.2020.123424. (PMID: 10.1016/j.jhazmat.2020.12342433113716)
      Tan Y, Cao X, Chen S, Ao X, Li J, Hu K, Liu S, Penttinen P, Yang Y, Yu X, Liu A, Liu C, Zhao K, Zou L (2023) Antibiotic and heavy metal resistance genes in sewage sludge survive during aerobic composting. Sci Total Environ 866:161386. https://doi.org/10.1016/j.scitotenv.2023.161386. (PMID: 10.1016/j.scitotenv.2023.16138636608829)
      Taylor P, Reeder R (2020) Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agric Biosci 1:1. https://doi.org/10.1186/s43170-020-00001-y. (PMID: 10.1186/s43170-020-00001-y)
      Terrado-Campos D, Tayeb-Cherif K, Peris-Vicente J, Carda-Broch S, Esteve-Romero J (2017) Determination of oxolinic acid, danofloxacin, ciprofloxacin, and enrofloxacin in porcine and bovine meat by micellar liquid chromatography with fluorescence detection. Food Chem 221:1277–1284. https://doi.org/10.1016/j.foodchem.2016.11.029. (PMID: 10.1016/j.foodchem.2016.11.02927979089)
      Thomashow LS, Kwak YS, Weller DM (2019) Root-associated microbes in sustainable agriculture: models, metabolites and mechanisms. Pest Manage Sci 75:2360–2367. https://doi.org/10.1002/ps.5406. (PMID: 10.1002/ps.5406)
      Tiseo K, Huber L, Gilbert M, Robinson TP, Van Boeckel TP (2020) Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9:918. https://doi.org/10.3390/antibiotics9120918. (PMID: 10.3390/antibiotics9120918333488017766021)
      Toju H, Okayasu K, Notaguchi M (2019) Leaf-associated microbiomes of grafted tomato plants. Sci Rep 9:1787. https://doi.org/10.1038/s41598-018-38344-2. (PMID: 10.1038/s41598-018-38344-2307419826370777)
      Tong L, Qin L, Guan C, Wilson ME, Li X, Cheng D, Ma J, Liu H, Gong F (2020a) Antibiotic resistance gene profiling in response to antibiotic usage and environmental factors in the surface water and groundwater of Honghu lake, China. Environ Sci Pollut Res 27:31995–32005. https://doi.org/10.1007/s11356-020-09487-5. (PMID: 10.1007/s11356-020-09487-5)
      Tong X-n, Wang X-z, He X-j, Wang Z, Li W-x (2020b) Effects of antibiotics on microbial community structure and microbial functions in constructed wetlands treated with artificial root exudates. Environ Sci Processes Impacts 22:217–226. https://doi.org/10.1039/C9EM00458K. (PMID: 10.1039/C9EM00458K)
      Tsalgatidou PC, Thomloudi EE, Nifakos K, Delis C, Venieraki A, Katinakis P (2023) Calendula officinalis-a great source of plant growth promoting endophytic bacteria (PGPEB) and biological control agents (BCA). Microorganisms. https://doi.org/10.3390/microorganisms11010206. (PMID: 10.3390/microorganisms11010206366774989865722)
      Ullah H, Yasmin H, Mumtaz S, Jabeen Z, Naz R, Nosheen A, Hassan MN (2020) Multitrait Pseudomonas spp. isolated from monocropped wheat (Triticum aestivum) suppress Fusarium root and crown rot. Phytopathology 110:582–592. https://doi.org/10.1094/PHYTO-10-19-0383-R. (PMID: 10.1094/PHYTO-10-19-0383-R31799901)
      Van den Meersche T, Rasschaert G, Haesebrouck F, Van Coillie E, Herman L, Van Weyenberg S, Daeseleire E, Heyndrickx M (2019) Presence and fate of antibiotic residues, antibiotic resistance genes and zoonotic bacteria during biological swine manure treatment. Ecotox Environ Safe 175:29–38. https://doi.org/10.1016/j.ecoenv.2019.01.127. (PMID: 10.1016/j.ecoenv.2019.01.127)
      Vandana UK, Rajkumari J, Singha LP, Satish L, Alavilli H, Sudheer PDVN, Chauhan S, Ratnala R, Satturu V, Mazumder PB, Pandey P (2021) The endophytic microbiome as a hotspot of synergistic interactions, with prospects of plant growth promotion. Biology 10:101. https://doi.org/10.3390/biology10020101. (PMID: 10.3390/biology10020101335357067912845)
      Vasco KA, Bowcutt B, Carbonell S, Souza L, Robison C, Abuelo A, Erskine R, Norby B, Zhang L, Ruegg PL, Manning SD (2024) Selection of antibiotic-resistant bacterial populations in the dairy cow gut following intramuscular ceftiofur treatment for metritis. J Dairy Sci. https://doi.org/10.3168/jds.2023-24572. (PMID: 10.3168/jds.2023-2457239265834)
      Vianna JF, Bezerra S, Oliveira KIN, Albuquerque J, Fulco EL UL (2019) Binding energies of the drugs capreomycin and streptomycin in complex with tuberculosis bacterial ribosome subunits. Phys Chem Chem Phys 21:19192–19200. https://doi.org/10.1039/C9CP03631H. (PMID: 10.1039/C9CP03631H31436279)
      Vincent CI, Hijaz F, Pierre M, Killiny N (2022) Systemic uptake of oxytetracycline and streptomycin in huanglongbing-affected citrus groves after foliar application and trunk injection. Antibiot Basel Switz. https://doi.org/10.3390/antibiotics11081092. (PMID: 10.3390/antibiotics11081092)
      Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C (2020) Plasmid transfer by conjugation in gram-negative bacteria: from the cellular to the community level. Genes 11:1239. https://doi.org/10.3390/genes11111239. (PMID: 10.3390/genes11111239331056357690428)
      Wagner MR, Busby PE, Balint-Kurti P (2020) Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytol 225:2152–2165. https://doi.org/10.1111/nph.16284. (PMID: 10.1111/nph.1628431657460)
      Wallace JS, Garner E, Pruden A, Aga DS (2018) Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods. Environ Pollut 236:764–772. https://doi.org/10.1016/j.envpol.2018.02.024. (PMID: 10.1016/j.envpol.2018.02.02429455089)
      Wang Q, Wang P, Yang Q (2018) Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Sci Total Environ 621:990–999. https://doi.org/10.1016/j.scitotenv.2017.10.128. (PMID: 10.1016/j.scitotenv.2017.10.12829054666)
      Wang G, Li G, Chang J, Kong Y, Jiang T, Wang J, Yuan J (2021) Enrichment of antibiotic resistance genes after sheep manure aerobic heap composting. Bioresour Technol 323:124620. https://doi.org/10.1016/j.biortech.2020.124620. (PMID: 10.1016/j.biortech.2020.12462033429314)
      Wang F, Sun R, Hu H, Duan G, Meng L, Qiao M (2022a) The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. Sci Total Environ 828:154463. https://doi.org/10.1016/j.scitotenv.2022.154463. (PMID: 10.1016/j.scitotenv.2022.15446335276164)
      Wang J, Wang L, Zhu L, Wang J, Xing B (2022b) Antibiotic resistance in agricultural soils: source, fate, mechanism and attenuation strategy. Crit Rev Env Sci Tec 52:847–889. https://doi.org/10.1080/10643389.2020.1835438. (PMID: 10.1080/10643389.2020.1835438)
      Wang JY, Fiorilli V, Lanfranco L, Asami T, Al-Babili S (2023a) Editorial: specialized metabolites manipulating organismal behaviors and rhizospheric communications. Front Plant Sci. https://doi.org/10.3389/fpls.2023.1197058. (PMID: 10.3389/fpls.2023.11970583844510210786348)
      Wang L, Yan X, Zhu L, Wang J, Xing B, Kim YM, Wang J (2023b) Spread and driving factors of antibiotic resistance genes in soil-plant system in long-term manured greenhouse under lead (pb) stress. Sci Total Environ 855:158756. https://doi.org/10.1016/j.scitotenv.2022.158756. (PMID: 10.1016/j.scitotenv.2022.15875636113785)
      Wani AK, Akhtar N, Singh R, Chopra C, Kakade P, Borde M, Al-Khayri JM, Suprasanna P, Zimare SB (2022) Prospects of advanced metagenomics and meta-omics in the investigation of phytomicrobiome to forecast beneficial and pathogenic response. Mol Biol Rep 49:12165–12179. https://doi.org/10.1007/s11033-022-07936-7. (PMID: 10.1007/s11033-022-07936-736169892)
      Wash P, Batool A, Mulk S, Nazir S, Yasmin H, Mumtaz S, Alyemeni MN, Kaushik P, Hassan MN (2022) Prevalence of antimicrobial resistance and respective genes among Bacillus spp., a versatile bio-fungicide. Int J Env Res Pub He 19:14997. https://doi.org/10.3390/ijerph192214997. (PMID: 10.3390/ijerph192214997)
      Wei H, Ding S, Qiao Z, Su Y, Xie B (2020) Insights into factors driving the transmission of antibiotic resistance from sludge compost-amended soil to vegetables under cadmium stress. Sci Total Environ 729:138990. https://doi.org/10.1016/j.scitotenv.2020.138990. (PMID: 10.1016/j.scitotenv.2020.13899032380328)
      Wein T, Hülter NF, Mizrahi I, Dagan T (2019) Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun 10:2595. https://doi.org/10.1038/s41467-019-10600-7. (PMID: 10.1038/s41467-019-10600-7311971636565834)
      Wen T, Yu G-H, Hong W-D, Yuan J, Niu G-Q, Xie P-H, Sun F-S, Guo L-D, Kuzyakov Y, Shen Q-R (2022) Root exudate chemistry affects soil carbon mobilization via microbial community reassembly. Fundamental Res 2:697–707. https://doi.org/10.1016/j.fmre.2021.12.016. (PMID: 10.1016/j.fmre.2021.12.016)
      Wu J, Wang J, Li Z, Guo S, Li K, Xu P, Ok YS, Jones DL, Zou J (2023) Antibiotics and antibiotic resistance genes in agricultural soils: a systematic analysis. Crit Rev Env Sci Tec 53:847–864. https://doi.org/10.1080/10643389.2022.2094693. (PMID: 10.1080/10643389.2022.2094693)
      Xiang Q, Zhu D, Giles M, Neilson R, Yang X-R, Qiao M, Chen Q-L (2020) Agricultural activities affect the pattern of the resistome within the phyllosphere microbiome in peri-urban environments. J Hazard Mater 382:121068. https://doi.org/10.1016/j.jhazmat.2019.121068. (PMID: 10.1016/j.jhazmat.2019.12106831472469)
      Xiao R, Huang D, Du L, Song B, Yin L, Chen Y, Gao L, Li R, Huang H, Zeng G (2023) Antibiotic resistance in soil-plant systems: a review of the source, dissemination, influence factors, and potential exposure risks. Sci Total Environ 869:161855. https://doi.org/10.1016/j.scitotenv.2023.161855. (PMID: 10.1016/j.scitotenv.2023.16185536708845)
      Xiong C, Zhu Y-G, Wang J-T, Singh B, Han L-L, Shen J-P, Li P-P, Wang G-B, Wu C-F, Ge A-H, Zhang L-M, He J-Z (2021) Host selection shapes crop microbiome assembly and network complexity. New Phytol 229:1091–1104. https://doi.org/10.1111/nph.16890. (PMID: 10.1111/nph.1689032852792)
      Xu F, Liu Y, Du W, Li C, Xu M, Xie T, Yin Y, Guo H (2021a) Response of soil bacterial communities, antibiotic residuals, and crop yields to organic fertilizer substitution in North China under wheat–maize rotation. Sci Total Environ 785:147248. https://doi.org/10.1016/j.scitotenv.2021.147248. (PMID: 10.1016/j.scitotenv.2021.147248)
      Xu H, Chen Z, Huang R, Cui Y, Li Q, Zhao Y, Wang X, Mao D, Luo Y, Ren H (2021b) Antibiotic resistance gene-carrying plasmid spreads into the plant endophytic bacteria using soil bacteria as carriers. Environ Sci Technol 55:10462–10470. https://doi.org/10.1021/acs.est.1c01615. (PMID: 10.1021/acs.est.1c0161534114802)
      Xu Z, Liu Y, Zhang N, Xun W, Feng H, Miao Y, Shao J, Shen Q, Zhang R (2023) Chemical communication in plant–microbe beneficial interactions: a toolbox for precise management of beneficial microbes. Curr Opin Microbiol 72:102269. https://doi.org/10.1016/j.mib.2023.102269. (PMID: 10.1016/j.mib.2023.10226936682279)
      Yan K, Han W, Zhu Q, Li C, Dong Z, Wang Y (2022) Leaf surface microtopography shaping the bacterial community in the phyllosphere: evidence from 11 tree species. Microbiol Res 254:126897. https://doi.org/10.1016/j.micres.2021.126897. (PMID: 10.1016/j.micres.2021.12689734710835)
      Yang Y, Liu G, Ye C, Liu W (2019) Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau. J Hazard Mater 361:283–293. https://doi.org/10.1016/j.jhazmat.2018.09.002. (PMID: 10.1016/j.jhazmat.2018.09.00230212791)
      Yang R, Jiang S, Wen X, Song X, Wang X, Li D, Yin Q, Wu X, Wang D, Chen Z (2021) Antifungal activity and possible mode of action of ningnanmycin against tea gray blight disease pathogen pseudopestalotiopsis camelliae-sinensis. Phytopathol 111:1735–1742. https://doi.org/10.1094/phyto-09-20-0382-r. (PMID: 10.1094/phyto-09-20-0382-r)
      Yang L-Y, Zhou S-Y-D, Lin C-S, Huang X-R, Neilson R, Yang X-R (2022) Effects of biofertilizer on soil microbial diversity and antibiotic resistance genes. Sci Total Environ 820:153170. https://doi.org/10.1016/j.scitotenv.2022.153170. (PMID: 10.1016/j.scitotenv.2022.15317035051473)
      Yang B, Zheng M, Dong W, Xu P, Zheng Y, Yang W, Luo Y, Guo J, Niu D, Yu Y, Jiang C (2023) Plant disease resistance-related pathways recruit beneficial bacteria by remodeling root exudates upon Bacillus cereus AR156 treatment. Microbiol Spectr 11:e03611–03622. https://doi.org/10.1128/spectrum.03611-22. (PMID: 10.1128/spectrum.03611-223678656210100852)
      Yin L, Wang X, Li Y, Liu Z, Mei Q, Chen Z (2023) Uptake of the plant agriculture-used antibiotics oxytetracycline and streptomycin by cherry radisheffect on plant microbiome and the potential health risk. J Agric Food Chem 71:4561–4570. https://doi.org/10.1021/acs.jafc.3c01052. (PMID: 10.1021/acs.jafc.3c0105236945880)
      Yu X, Zhang X, Chen J, Li Y, Liu X, Feng Y, Sun Y (2022) Source, occurrence and risks of twenty antibiotics in vegetables and soils from facility agriculture through fixed-point monitoring and numerical simulation. J Environ Manage 319:115652. https://doi.org/10.1016/j.jenvman.2022.115652. (PMID: 10.1016/j.jenvman.2022.11565235820309)
      Yu Y, Zhang Q, Zhang Z, Zhou S, Jin M, Zhu D, Yang X, Qian H, Lu T (2023) Plants select antibiotic resistome in rhizosphere in early stage. Sci Total Environ 858:159847. https://doi.org/10.1016/j.scitotenv.2022.159847. (PMID: 10.1016/j.scitotenv.2022.15984736461576)
      Yu Z, Liu Z, Sun L, Dong C, Jin Y, Hu B, Cheng D (2024) Mobile genetic elements mediate the cross-media transmission of antibiotic resistance genes from pig farms and their risks. Sci Total Environ 926:172115. https://doi.org/10.1016/j.scitotenv.2024.172115. (PMID: 10.1016/j.scitotenv.2024.17211538569972)
      Zeng Q, Sun J, Zhu L (2019) Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China. Chemosphere 224:900–909. https://doi.org/10.1016/j.chemosphere.2019.02.167. (PMID: 10.1016/j.chemosphere.2019.02.16730986896)
      Zhang Q-Q, Tian G-M, Jin R-C (2018) The occurrence, maintenance, and proliferation of antibiotic resistance genes (ARGs) in the environment: influencing factors, mechanisms, and elimination strategies. Appl Microbiol Biot 102:8261–8274. https://doi.org/10.1007/s00253-018-9235-7. (PMID: 10.1007/s00253-018-9235-7)
      Zhang M, He L-Y, Liu Y-S, Zhao J-L, Liu W-R, Zhang J-N, Chen J, He L-K, Zhang Q-Q, Ying G-G (2019a) Fate of veterinary antibiotics during animal manure composting. Sci Total Environ 650:1363–1370. https://doi.org/10.1016/j.scitotenv.2018.09.147. (PMID: 10.1016/j.scitotenv.2018.09.14730308823)
      Zhang Y-J, Hu H-W, Chen Q-L, Singh BK, Yan H, Chen D, He J-Z (2019b) Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ Int 130:104912. https://doi.org/10.1016/j.envint.2019.104912. (PMID: 10.1016/j.envint.2019.10491231220751)
      Zhang Y-J, Hu H-W, Yan H, Wang J-T, Lam SK, Chen Q-L, Chen D, He J-Z (2019c) Salinity as a predominant factor modulating the distribution patterns of antibiotic resistance genes in ocean and river beach soils. Sci Total Environ 668:193–203. https://doi.org/10.1016/j.scitotenv.2019.02.454. (PMID: 10.1016/j.scitotenv.2019.02.45430851680)
      Zhang Y, Wang J, Ge S, Zeng Y, Wang N, Wu Y (2020) Roxithromycin inhibits compound 48/80-induced pseudo-allergy via the MrgprX2 pathway both in vitro and in vivo. Cell Immunol 358:104239. https://doi.org/10.1016/j.cellimm.2020.104239. (PMID: 10.1016/j.cellimm.2020.10423933129497)
      Zhang A-N, Gaston JM, Dai CL, Zhao S, Poyet M, Groussin M, Yin X, Li L-G, van Loosdrecht MCM, Topp E, Gillings MR, Hanage WP, Tiedje JM, Moniz K, Alm EJ, Zhang T (2021a) An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat Commun 12:4765. https://doi.org/10.1038/s41467-021-25096-3. (PMID: 10.1038/s41467-021-25096-3343629258346589)
      Zhang M, Cai Z, Zhang G, Zhang D, Pan X (2021b) Abiotic mechanism changing tetracycline resistance in root mucus layer of floating plant: the role of antibiotic-exudate complexation. J Hazard Mater 416:125728. https://doi.org/10.1016/j.jhazmat.2021.125728. (PMID: 10.1016/j.jhazmat.2021.12572833813291)
      Zhang W-G, Wen T, Liu L-Z, Li J-Y, Gao Y, Zhu D, He J-Z, Zhu Y-G (2021c) Agricultural land-use change and rotation system exert considerable influences on the soil antibiotic resistome in Lake Tai Basin. Sci Total Environ 771:144848. https://doi.org/10.1016/j.scitotenv.2020.144848. (PMID: 10.1016/j.scitotenv.2020.14484833736163)
      Zhang Y, Cheng D, Zhang Y, Xie J, Xiong H, Wan Y, Zhang Y, Chen X, Shi X (2021d) Soil type shapes the antibiotic resistome profiles of long-term manured soil. Sci Total Environ 786:147361. https://doi.org/10.1016/j.scitotenv.2021.147361. (PMID: 10.1016/j.scitotenv.2021.14736133971610)
      Zhang J, Liu Z, Song S, Fang J, Wang L, Zhao L, Li C, Li W, Byun HM, Guo L, Li P (2022a) The exposure levels and health risk assessment of antibiotics in urine and its association with platelet mitochondrial DNA methylation in adults from Tianjin, China: a preliminary study. Ecotoxicol Environ Saf 231:113204. https://doi.org/10.1016/j.ecoenv.2022.113204. (PMID: 10.1016/j.ecoenv.2022.11320435065505)
      Zhang Y, Zhou J, Wu J, Hua Q, Bao C (2022b) Distribution and transfer of antibiotic resistance genes in different soil–plant systems. Environ Sci Pollut R 29:59159–59172. https://doi.org/10.1007/s11356-021-17465-8. (PMID: 10.1007/s11356-021-17465-8)
      Zhang Y, Cheng D, Xie J, Hu Q, Xie J, Shi X (2023a) Long-term field application of manure induces deep selection of antibiotic resistomes in leaf endophytes of Chinese cabbage. Sci Total Environ 882:163334. https://doi.org/10.1016/j.scitotenv.2023.163334. (PMID: 10.1016/j.scitotenv.2023.16333437061064)
      Zhang Y, Wang H, Hu M, Cai R, Miao Y, Zhu X (2023b) Heavy metals potentially drive co-selectionof antibiotic resistance genes by shifting soil bacterial communities in paddysoils along middle and lower Yangtze river. Pedosphere. https://doi.org/10.1016/j.pedsph.2023.01.012. (PMID: 10.1016/j.pedsph.2023.01.012)
      Zhao F, Chen L, Yang L, Sun L, Li S, Li M, Feng Q (2020a) Effects of land use and rainfall on sequestration of veterinary antibiotics in soils at the hillslope scale. Environ Pollut 260:114112. https://doi.org/10.1016/j.envpol.2020.114112. (PMID: 10.1016/j.envpol.2020.11411232041016)
      Zhao X, Shen J-P, Zhang L-M, Du S, Hu H-W, He J-Z (2020b) Arsenic and cadmium as predominant factors shaping the distribution patterns of antibiotic resistance genes in polluted paddy soils. J Hazard Mater 389:121838. https://doi.org/10.1016/j.jhazmat.2019.121838. (PMID: 10.1016/j.jhazmat.2019.12183831848095)
      Zhao F, Yang L, Yen H, Yu X, Fang L, Li M, Chen L (2022) Can agricultural land use alter the responses of soil biota to antibiotic contamination? J Hazard Mater 437:129350. https://doi.org/10.1016/j.jhazmat.2022.129350. (PMID: 10.1016/j.jhazmat.2022.12935035749896)
      Zheng Y-z, Liu Z-y, Li Y, Lv X-y, Wu Y, Huang M-w, Pan X-c, Chen J-f, Lin C-d (2023) Ceftazidime exhibits a broad inhibition to the infection of SARS-CoV-2 prototype and omicron variant in vitro by blocking spike protein-ACE2 interaction. Acta Pharmacol Sin 44:1932–1934. https://doi.org/10.1038/s41401-023-01071-0. (PMID: 10.1038/s41401-023-01071-03694480010028314)
      Zhi S, Shen S, Zhou J, Ding G, Zhang K (2020) Systematic analysis of occurrence, density and ecological risks of 45 veterinary antibiotics: focused on family livestock farms in Erhai Lake Basin, Yunnan, China. Environ Pollut 267:115539. https://doi.org/10.1016/j.envpol.2020.115539. (PMID: 10.1016/j.envpol.2020.115539328920217455523)
      Zhou S-Y-D, Wei M-Y, Giles M, Neilson R, Zheng F, Zhang Q, Zhu Y-G, Yang X-R (2020) Prevalence of antibiotic resistome in ready-to-eat salad. Front Public Health. https://doi.org/10.3389/fpubh.2020.00092. (PMID: 10.3389/fpubh.2020.00092335752427779681)
      Zhu Z, Schnell L, Müller B, Müller M, Papatheodorou P, Barth H (2019) The antibiotic bacitracin protects human intestinal epithelial cells and stem cell-derived intestinal organoids from Clostridium difficile toxin TcdB. Stem Cells Int 2019:4149762. https://doi.org/10.1155/2019/4149762. (PMID: 10.1155/2019/4149762314675626701344)
      Zhu L, Lian Y, Lin D, Huang D, Yao Y, Ju F, Wang M (2022a) Insights into microbial contamination in multi-type manure-amended soils: the profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. J Hazard Mater 437:129356. https://doi.org/10.1016/j.jhazmat.2022.129356. (PMID: 10.1016/j.jhazmat.2022.12935635728317)
      Zhu Y-G, Xiong C, Wei Z, Chen Q-L, Ma B, Zhou S-Y-D, Tan J, Zhang L-M, Cui H-L, Duan G-L (2022b) Impacts of global change on the phyllosphere microbiome. New Phytol 234:1977–1986. https://doi.org/10.1111/nph.17928. (PMID: 10.1111/nph.17928349214299306672)
    • Grant Information:
      lzujbky-2024-ey12 Fundamental Research Funds for the Central Universities
    • Contributed Indexing:
      Keywords: Agriculture; Antibiotics; Bacteria; Bioinoculants; Microbiome; Resistance
    • Accession Number:
      0 (Anti-Bacterial Agents)
      0 (Fertilizers)
      0 (Manure)
      0 (Sewage)
      0 (Soil)
      0 (Wastewater)
    • Publication Date:
      Date Created: 20241217 Date Completed: 20241217 Latest Revision: 20241220
    • Publication Date:
      20241221
    • Accession Number:
      10.1007/s11274-024-04214-5
    • Accession Number:
      39690351