Effect of berry maturity stages on the germination and protein constituents of African nightshade (Solanum scabrum) seeds.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      African nightshade (Solanum scabrum) is a vegetable of great importance in several African countries. Production by seed is constrained by limited access to high quality seed, leaving farmers unable to meet the growing demand. The aim of this study was to investigate effects of berry maturity stages (mature green and purple) on germination and protein components of African nightshade seeds. Nine accessions were used for the germination assays and three selected for the proteomics. The seeds harvested at the purple ripe stage showed a higher germination percentage than seeds harvested at the mature green stage. Seeds of three accessions, which showed different germination responses depending on maturity, were subjected to gel-based proteome comparison followed by mass spectrometry. Analysis revealed a total of 563 spots, of which 19-23% were differentially abundant between the two harvest times. This is the first study to utilise proteomics in African nightshade. Four types of seed storage proteins were identified. Identified proteins were associated with seed maturation, indicating more advanced maturation stages in accessions with higher germination capacity. In addition, a reference proteome map of S. scabrum was created using GelMap platform ( www.gelmap.de ). Colour change of African nightshade berries seems to be a suitable indicator for seed maturity.
      Competing Interests: Declarations. Competing interests: The authors declare no competing interests. Ethics Statement: The study adhered to ethical guidelines and received permission to conduct field experiments from Jomo Kenyatta University of Agriculture and technology and formal permission from KEGG pathway database to publish this material commercially under open access license.
      (© 2024. The Author(s).)
    • References:
      Mwai, G. N., Onyango, J. C. & Abukusta-onyango, M. O. Taxonomic identification and characterization of African Nightshades (Solanum L. Section Solanum). Afr. J. Food Agric. Nutr. Dev. 7, 1–15 (2007).
      Ronoh, R. et al. African nightshades: Genetic, biochemical and metabolite diversity of an underutilised indigenous leafy vegetable and its potential for plant breeding. J. Hortic. Sci. Biotechnol. 93, 113–121 (2018). (PMID: 10.1080/14620316.2017.1358112)
      Schippers, R. African indigenous vegetables: An overview of the cultivated species. Nat. Resour. Int. Ltd. 2, 1–214 (2000).
      Kirigia, D., Winkelmann, T., Kasili, R. & Mibus, H. Nutritional composition in African nightshade (Solanum scabrum) influenced by harvesting methods, age and storage conditions. Postharvest Biol. Technol. 153, 142–151 (2019). (PMID: 10.1016/j.postharvbio.2019.03.019)
      Ekesa, B. N., Walingo, M. K. & Abukutsa-Onyango, M. Dietary diversity, nutrition status and morbidity of pre-school children in Matungu division, Western Kenya. Int. J. Food Saf. Nutr. Public Heal. 2, 131–144 (2009). (PMID: 10.1504/IJFSNPH.2009.029279)
      Ojiewo, C. O. et al. Selection, evaluation and release of varieties from genetically diverse African Nightshade germplasm. Int. J. Plant Breed. 7 (2013).
      Tetteh, R., AboagyeL, M., Darko, R. & Osafo, E. A. Effect of maturity stages on seed quality of two tomato accessions. African Crop Sci. J. 26, 237–244 (2018). (PMID: 10.4314/acsj.v26i2.6)
      Dias, D. C. F. S., Ribeiro, F. P., Dias, L. A. S., Silva, D. J. H. & Vidigal, D. S. Tomato seed quality harvested from different trusses. Seed Sci. Technol. 34, 681–689 (2006). (PMID: 10.15258/sst.2006.34.3.14)
      Franco, O. L. et al. Proteomic evaluation of coffee zygotic embryos in two different stages of seed development. Plant Physiol. Biochem. 47, 1046–1050 (2009). (PMID: 1977590010.1016/j.plaphy.2009.08.008)
      Kwon, O. S. & Badford, K. Tomato seed development and quality as influenced by preharvest treatment with ethephon. Hortscience 22, 588–591 (1987). (PMID: 10.21273/HORTSCI.22.4.588)
      Valdes, M. & Gray, D. The influence of stage of fruit maturation on seed quality in tomato (Lycopersicon lycopersicum (L.) Karsten). J. Seed Sci. Technol. 26, 309–318 (1998).
      Wang, W. Q., Liu, S. J., Song, S. Q. & Møller, I. M. Proteomics of seed development, desiccation tolerance, germination and vigor. Plant Physiol. Biochem. 86, 1–15 (2015). (PMID: 2546169510.1016/j.plaphy.2014.11.003)
      Smolikova, G. et al. Bringing new methods to the seed proteomics platform: Challenges and perspectives. Int. J. Mol. Sci. 21, 1–54 (2020). (PMID: 10.3390/ijms21239162)
      Li, W., Gao, Y., Xu, H., Zhang, Y. & Wang, J. A proteomic analysis of seed development in brassica campestri L. PLoS ONE 7, 66 (2012).
      Sano, N. et al. Proteomic analysis of stress-related proteins in rice seeds during the desiccation phase of grain filling. Plant Biotechnology 156, 147–156 (2013). (PMID: 10.5511/plantbiotechnology.13.0207a)
      ISTA. Seed_Sampling_I_S_T_A (2016).
      Faurobert, M., Pelpoir, E. & Chaïb, J. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Methods Mol. Biol. 355, 9–14 (2007). (PMID: 17093297)
      Mihr, C. & Braun, H. Protomics in plant biology. in Conn,P.M (eds.) Handbook of Proteomic Methods 409–410 (Humama Press, 2003).
      Berth, M., Moser, F. M., Kolbe, M. & Bernhardt, J. The state of the art in the analysis of two-dimensional gel electrophoresis images. Appl. Microbiol. Biotechnol. 76, 1223–1243 (2007). (PMID: 17713763227915710.1007/s00253-007-1128-0)
      Braun, H.-P., Klodmann, J., Sunderhaus, S., Nimtz, M. & Jansch, L. Internal architecture of mitochondrial complex I from Arabidopsis thaliana. Plant Cell 22, 797–810 (2010). (PMID: 20197505286145910.1105/tpc.109.073726)
      Klodmann, J., Senkler, M., Rode, C. & Braun, H. P. Defining the protein complex proteome of plant mitochondria. Plant Physiol. 157, 587–598 (2011). (PMID: 21841088319255210.1104/pp.111.182352)
      Senkler, M. & Braun, H. P. Functional annotation of 2D protein maps: The GelMap portal. Front. Plant Sci. 3, 1–5 (2012). (PMID: 10.3389/fpls.2012.00087)
      Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. https://CRAN.R-project.org/package=gplots (2024).
      Hay, F. R. & Whitehouse, K. J. Rethinking the approach to viability monitoring in seed genebanks. Conserv. Physiol. 5, 1–13 (2017). (PMID: 10.1093/conphys/cox009)
      Ahmed, A. S., ShantappaTirakannanavar, S. T., Merwade, M. N., Gangadarappa, P. M. & Devappa, A. Influence of stages of fruit harvest and post harvest ripening periods on seed quality in paprika chilli (Capsicum annuum L.). Karnataka J. Agric Sci. 21, 266–269 (2008).
      Shewry, P. R., Napier, J. A. & Tatham, A. S. Seed storage proteins: Structures and biosynthesis. Plant Cell 7, 945–956 (1995). (PMID: 7640527160892)
      Breiteneder, H. & Radauer, C. A classification of plant food allergens. J. Allergy Clin. Immunol. 113, 821–830 (2004). (PMID: 1513156210.1016/j.jaci.2004.01.779)
      Koshiyama, I. Storage proteins of soybean. Seed Proteins 14, 427–450 (1983). (PMID: 10.1007/978-94-009-6801-1_14)
      Dunwell, J. M., Purvis, A. & Khuri, S. Cupins: The most functionally diverse protein superfamily?. Phytochemistry 65, 7–17 (2004). (PMID: 1469726710.1016/j.phytochem.2003.08.016)
      Galperin, M. Y. & Koonin, E. V. Divergence and convergence in enzyme evolution. J. Biol. Chem. 287, 21–28 (2012). (PMID: 2206932410.1074/jbc.R111.241976)
      Breen, J. P. & Crouch, M. L. Molecular analysis of a cruciferin storage protein gene family of Brassica napus. Plant Mol. Biol. 19, 1049–1055 (1992). (PMID: 151112910.1007/BF00040536)
      Nietzel, T. et al. The native structure and composition of the cruciferin complex in brassica napus. J. Biol. Chem. 288, 2238–2245 (2013). (PMID: 2319234010.1074/jbc.M112.356089)
      Sjödahl, S. et al. Cruciferin gene families are expressed coordinately but with tissue-specific differences during Brassica napus seed development. Plant Mol. Biol. 23, 1165–1176 (1993). (PMID: 829278110.1007/BF00042350)
      Ferreira, F. et al. Molecular properties of plant food allergens: A current classification into protein families. Open Immunol. J. 1, 1–12 (2008). (PMID: 10.2174/1874226200801010001)
      Wang, W. Q., Møller, I. M. & Song, S. Q. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J. Proteomics 77, 68–86 (2012). (PMID: 2279635610.1016/j.jprot.2012.07.005)
      Rose, T. L., Gomes, V. M., Da Cunha, M., Fernandes, K. V. S. & Xavier-Filho, J. Effect of sugars on the association between cowpea vicilin (7S storage proteins) and fungal cells. BIOCELL 27, 173–179 (2003). (PMID: 1451023510.32604/biocell.2003.27.173)
      Borad, V. & Sriram, S. Pathogenesis-related proteins for the plant protection. Asian J. Exp. Sci 22, 189–196 (2008).
      Sheoran, I. S., Olson, D. J. H., Ross, A. R. S. & Sawhney, V. K. Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5, 3752–3764 (2005). (PMID: 1609703110.1002/pmic.200401209)
      Wang, Y. et al. Major Latex Protein-Like Protein 43 (MLP43) Functions as a Positive Regulator During Abscisic Acid Responses and Confers Drought Tolerance in Arabidopsis thaliana 1–14 (2015). https://doi.org/10.1093/jxb/erv477 .
      Massange-Sánchez, J. A., Casados-Vázquez, L. E., Juarez-Colunga, S., Sawers, R. J. H. & Tiessen, A. The phosphoglycerate kinase (Pgk) gene family of maize (zea mays var. b73). Plants 9, 1–20 (2020). (PMID: 10.3390/plants9121639)
      Willam, M. & Schnarrenberger, C. The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: A case study of functional redundancy in ancient pathways through endosymbiosis. Springer - Velag 32, 1–18 (1997).
      Hajduch, M. et al. Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol. 141, 32–46 (2006). (PMID: 16543413145932510.1104/pp.105.075390)
      Agrawal, G. K., Hajduch, M., Graham, K. & Thelen, J. J. In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol. 148, 504–518 (2008). (PMID: 18599654252812310.1104/pp.108.119222)
      Fait, A. et al. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. Plant Physiol. 157, 1026–1042 (2011). (PMID: 21921115325214010.1104/pp.111.179986)
      Angelovici, R., Galili, G., Fernie, A. R. & Fait, A. Seed desiccation: A bridge between maturation and germination. Trends Plant Sci. 15, 211–218 (2010). (PMID: 2013856310.1016/j.tplants.2010.01.003)
      Akihiro, T. et al. Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol. 49, 1378–1389 (2008). (PMID: 1871376310.1093/pcp/pcn113)
      Carrari, F. et al. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol. 142, 1380–1396 (2006). (PMID: 17071647167604410.1104/pp.106.088534)
      Høj, P. B. & Fincher, G. B. Molecular evolution of plant β-glucan endohydrolases. Plant J. 7, 367–379 (1995). (PMID: 775711110.1046/j.1365-313X.1995.7030367.x)
      Iglesias-Fernández, R., Rodríguez-Gacio, M. C., Barrero-Sicilia, C., Carbonero, P. & Matilla, A. Three endo-β-mannanase genes expressed in the micropylar endosperm and in the radicle influence germination of Arabidopsis thaliana seeds. Planta 233, 25–36 (2011). (PMID: 2087818010.1007/s00425-010-1257-z)
      Rao, T. S. R. B., Naresh, J. V., Reddy, P. S., Reddy, M. K. & Mallikarjuna, G. Expression of Pennisetum glaucum eukaryotic translational initiation factor 4a (PgeiF4A) confers improved drought, salinity, and oxidative stress tolerance in groundnut. Front. Plant Sci. 8, 1–15 (2017).
      Tuteja, N. et al. Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS One 9, 1–13 (2014). (PMID: 10.1371/journal.pone.0098287)
      Santosh, T., Bhadra, R., Naresh, J. V. & Reddy, P. S. Expression of pennisetum glaucum eukaryotic translational initiation factor 4A ( PgeIF4A ) confers improved drought, salinity, and oxidative stress tolerance in groundnut. Front. Plant Sci. 8, 1–15 (2017).
      Shao, Q., Liu, X., Su, T., Ma, C. & Wang, P. New insights into the role of seed oil body proteins in metabolism and plant development. Front. Plant Sci. 10, 1–14 (2019). (PMID: 10.3389/fpls.2019.01568)
      Barre, A., Simplicien, M., Cassan, G., Benoist, H. & Rougé, P. Oil bodies (oleosomes): Occurrence, structure, allergenicity. Rev. Fr. Allergol. 58, 574–580 (2018). (PMID: 10.1016/j.reval.2018.10.005)
      Miquel, M. et al. Specialization of oleosins in oil body dynamics during seed development in arabidopsis seeds. Plant Physiol. 164, 1866–1878 (2014). (PMID: 24515832398274910.1104/pp.113.233262)
      Bizouerne, E. et al. Gene co-expression analysis of tomato seed maturation reveals tissue-specific regulatory networks and hubs associated with the acquisition of desiccation tolerance and seed vigour. BMC Plant Biol. 21 (2021).
      Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D. & Penin, A. A. A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling. Plant J. 88, 1058–1070 (2016). (PMID: 2754938610.1111/tpj.13312)
      Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023). (PMID: 3630062010.1093/nar/gkac963)
    • Contributed Indexing:
      Keywords: Solanum scabrum; Germination percentage; Proteomics; Seed quality
    • Accession Number:
      0 (Plant Proteins)
      0 (Proteome)
    • Publication Date:
      Date Created: 20241216 Date Completed: 20241216 Latest Revision: 20241216
    • Publication Date:
      20241217
    • Accession Number:
      10.1038/s41598-024-80312-6
    • Accession Number:
      39681580