Assessing phytoremediation strategies for gold mine tailings: a bibliometric and systemic review.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
    • Publication Information:
      Publication: 1999- : Dordrecht : Kluwer Academic Publishers
      Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
    • Subject Terms:
    • Abstract:
      This study evaluates the effectiveness of phytoremediation strategies in mitigating the environmental impacts of gold mine tailings through a bibliometric and systematic review. Utilizing the PRISMA methodology, 45 primary research articles were selected and analyzed, highlighting key rends and insights in phytoremediation research. The review spans over two decades of research, with a notable annual growth rate of 2.81% and significant contributions from countries like Indonesia, Malaysia, and South Africa. Key findings emphasize the variability in phytoremediation success based on plant species, site conditions, and remediation techniques. Prominent plants identified include vetiver grass, Siam weed, and water hyacinth, which demonstrate significant potential in heavy metal uptake and soil stabilization. The study also underscores the importance of optimizing plant-microbe interactions and employing site-specific approaches to enhance remediation efficiency. Future research opportunities are identified, focusing on genetic engineering of plants, field trials, and integration of advanced monitoring technologies. Overall, this comprehensive review highlights the promising potential of phytoremediation as a sustainable and effective strategy for managing gold mine tailings, advocating for continued research and policy support to advance this green technology in environmental management.
      Competing Interests: Declarations. Competing interest: The authors declare that they have no competing of interest. Ethical approval: Approval The author has read, understood, and has complied as applicable with the statement on “Ethical Responsibilities of Authors” as found in the Instructions for Authors.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Alcantara, H. J., Doronila, A. I., Nicolas, M., Ebbs, S. D., & Kolev, S. D. (2015). Growth of selected plant species in biosolids-amended mine tailings. Minerals Engineering, 1(80), 25–32. https://doi.org/10.1016/j.mineng.2015.06.012. (PMID: 10.1016/j.mineng.2015.06.012)
      Allen, L., Jones, C., Dolby, K., Lynn, D., & Walport, M. (2009). Looking for landmarks: The role of expert review and bibliometric analysis in evaluating scientific publication outputs. PloS one., 4(6), e5910. (PMID: 10.1371/journal.pone.0005910)
      Andriya, N., Nadya, H. H., Sulistijorini, & Triadiati. (2019). The phytoremediation potential of non-edible oil-producing plants for gold mine tailings. Biodiversitas. https://doi.org/10.13057/biodiv/d201025. (PMID: 10.13057/biodiv/d201025)
      Araujo, F. S., Taborda-Llano, I., Nunes, E. B., & Santos, R. M. (2022). Recycling and reuse of mine tailings: A review of advancements and their implications. Geosciences, 12(9), 319. (PMID: 10.3390/geosciences12090319)
      Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714–727. (PMID: 10.1016/j.ecoenv.2019.02.068)
      Boonmeerati, U., & Sampanpanish, P. (2021). Enhancing arsenic phytoextraction of dwarf Napier grass (Pennisetum purpureum cv. Mott) from gold mine tailings by electrokinetics remediation with phosphate and EDTA. Journal of Hazardous, Toxic, and Radioactive Waste, 25(4), 04021027. (PMID: 10.1061/(ASCE)HZ.2153-5515.0000633)
      Buck, M. T., Straker, C. J., Mavri-Damelin, D., & Weiersbye, I. M. (2019). Diversity of arbuscular mycorrhizal (AM) fungi colonising roots of Indigenous Vachellia and Senegalia trees on gold and uranium mine tailings in South Africa. South African Journal of Botany, 121, 34–44. https://doi.org/10.1016/j.sajb.2018.10.014. (PMID: 10.1016/j.sajb.2018.10.014)
      Chaney, R. L., Li, Y. M., Brown, S. L., Homer, F. A., Malik, M., Angle, J. S., Baker, A. J., Reeves, R. D., & Chin, M. (2020). Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In Phytoremediation of contaminated soil and water.
      Chang, P., Kim, J.-Y., & Kim, K.-W. (2005). Concentrations of arsenic and heavy metals in vegetation at two abandoned mine tailings in South Korea. Environmental Geochemistry and Health, 27(2), 109–119. https://doi.org/10.1007/s10653-005-0130-7. (PMID: 10.1007/s10653-005-0130-7)
      Compaore, W. F., Dumoulin, A., & Rousseau, D. P. L. (2020). Metal uptake by spontaneously grown typha domingensis and introduced chrysopogon zizanioides in a constructed wetland treating gold mine tailing storage facility seepage. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2020.106037. (PMID: 10.1016/j.ecoleng.2020.106037)
      Ellegaard, O., & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact? Scientometrics. https://doi.org/10.1007/s11192-015-1645-z. (PMID: 10.1007/s11192-015-1645-z)
      Fitamo, D., & Leta, S. (2010). Assessment of plants growing on gold mine wastes for their potential to remove heavy metals from contaminated soils. International Journal of Environmental Studies, 67(5), 705–724. https://doi.org/10.1080/00207233.2010.513587. (PMID: 10.1080/00207233.2010.513587)
      González-Valdez, E., Alarcón, A., Ferrera-Cerrato, R., Vega-Carrillo, H. R., Maldonado-Vega, M., & Salas-Luévano, M. Á. (2016). Seed germination and seedling growth of five plant species for assessing potential strategies to stabilizing or recovering metals from mine tailings. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-015-2724-8. (PMID: 10.1007/s11270-015-2724-8)
      Hadzi, G. Y., Essumang, D. K., & Ayoko, G. A. (2024). Assessment of contamination and potential ecological risks of heavy metals in riverine sediments from gold mining and pristine areas in Ghana. Journal of Trace Elements and Minerals. https://doi.org/10.1016/j.jtemin.2023.100109. (PMID: 10.1016/j.jtemin.2023.100109)
      Hamzah, A., Kusuma, Z., Utomo, W. H., & Guritno, B. (2011). Siam weed (Chromolaena Odorata L.) for phytoremediation of artisanal gold mine tailings. Journal of Tropical Agriculture, 50, 88–91.
      Handayanto, E., Nuraini, Y., & Muddarisna, N. (2016). Optimization of plant species and chelating agents in phytoextraction of gold from small-scale gold mine tailings. Nature Environment and Pollution Technology, 15(3), 1083–1088.
      Kafle, A., Timilsina, A., Gautam, A., Adhikari, K., Bhattarai, A., & Aryal, N. (2022). Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, 8, 100203. (PMID: 10.1016/j.envadv.2022.100203)
      Karaca, Oznur, Cameselle, Claudio, & Reddy, Krishna R. (2018). Mine tailing disposal sites: Contamination problems, remedial options and phytocaps for sustainable remediation. Reviews in Environmental Science and Biotechnology, 17(1), 205–228. (PMID: 10.1007/s11157-017-9453-y)
      Kastury, F., Besedin, J., Betts, A. R., Asamoah, R., Herde, C., Netherway, P., Tully, J., Scheckel, K. G., & Juhasz, A. L. (2024). Arsenic, cadmium, lead, antimony bioaccessibility and relative bioavailability in legacy gold mining waste. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2024.133948. (PMID: 10.1016/j.jhazmat.2024.133948)
      Khan, I. U., Qi, S. S., Gul, F., Manan, S., Rono, J. K., Naz, M., Shi, X. N., Zhang, H., Dai, Z. C., & Dao Lin, D. (2023). A green approach used for heavy metals ‘phytoremediation’ via invasive plant species to mitigate environmental pollution: A review. Plants, 12(4), 725. (PMID: 10.3390/plants12040725)
      King, D. J., Doronila, A. I., Feenstra, C., Baker, A. J. M., & Woodrow, I. E. (2008). Phytostabilisation of arsenical gold mine tailings using four eucalyptus species: Growth, arsenic uptake and availability after five years. Science of the Total Environment, 406(1–2), 35–42. https://doi.org/10.1016/j.scitotenv.2008.07.054. (PMID: 10.1016/j.scitotenv.2008.07.054)
      Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). In-situ remediation approaches for the management of contaminated sites: A comprehensive overview. Reviews of Environmental Contamination and Toxicology, 236, 1–15.
      Lavanya, M. B., Viswanath, D. S., & Sivapullaiah, P. V. (2024). Phytoremediation: An eco-friendly approach for remediation of heavy metal-contaminated soils-A comprehensive review. Environmental Nanotechnology, Monitoring & Management, 22, 100975. (PMID: 10.1016/j.enmm.2024.100975)
      Leguizamo, M. A., Gómez, W. D., & Sarmiento, M. C. (2017). Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands—A review. Chemosphere, 1(168), 1230–47. (PMID: 10.1016/j.chemosphere.2016.10.075)
      Linnenluecke, M. K., & Griffiths, A. (2013). Firms and sustainability: Mapping the intellectual origins and structure of the corporate sustainability field. Global Environmental Change. https://doi.org/10.1016/j.gloenvcha.2012.07.007. (PMID: 10.1016/j.gloenvcha.2012.07.007)
      Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175–194. (PMID: 10.1177/0312896219877678)
      Liu, S., Yang, B., Liang, Y., Xiao, Y., & Fang, J. (2020). Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environmental Science and Pollution Research, 27(14), 16069–16085. (PMID: 10.1007/s11356-020-08282-6)
      Lu, N., Li, G., Han, J. C., Wang, H. Y., Yang, W., & Sun, Y. Y. (2019). Investigation of lead and cadmium contamination in mine soil and metal accumulation in selected plants growing in a gold mining area. Applied Ecology and Environmental Research, 17(5), 10587–10597. https://doi.org/10.15666/aeer/1705_1058710597. (PMID: 10.15666/aeer/1705_1058710597)
      Marfuah, D. S., Hamim, H., Sulistyaningsih, Y. C., Surono, S., Setyaningsih, L., & Saprudin, D. (2023). Dark septate endophyte inoculation improved Pb phytoremediation of Jatropha curcas and Reutealis Trisperma on gold mine tailings. Bioremediation Journal. https://doi.org/10.1080/10889868.2023.2279194. (PMID: 10.1080/10889868.2023.2279194)
      Melato, F. A., Mokgalaka, N. S., & McCrindle, R. I. (2016). Adaptation and detoxification mechanisms of vetiver grass (Chrysopogon zizanioides) Growing on Gold Mine Tailings. International Journal of Phytoremediation, 18(5), 509–520. https://doi.org/10.1080/15226514.2015.1115963. (PMID: 10.1080/15226514.2015.1115963)
      Nuraini, Y., Arfarita, N., & Siswanto, B. (2015). Isolation and characteristic of nitrogen-fixing bacteria and phosphate-solubilizing bacteria from soil high in mercury in tailings and compost areas of artisanal gold mine. Agrivita, 37(1), 1–7. https://doi.org/10.17503/agrivita-2015-37-1-p001-007. (PMID: 10.17503/agrivita-2015-37-1-p001-007)
      Okewale, I. A., & Grobler, H. (2023). Assessment of heavy metals in tailings and their implications on human health. Geosystems and Geoenvironment. https://doi.org/10.1016/j.geogeo.2023.100203. (PMID: 10.1016/j.geogeo.2023.100203)
      Orłowska, E., Orłowski, D., Mesjasz-Przybyłowicz, J., & Turnau, K. (2011). Role of mycorrhizal colonization in plant establishment on an alkaline gold mine tailing. International Journal of Phytoremediation, 13(2), 185–205. https://doi.org/10.1080/15226514.2010.495148. (PMID: 10.1080/15226514.2010.495148)
      Petelka, J., Abraham, J., Bockreis, A., Deikumah, J. P., & Zerbe, S. (2019). Soil heavy metal(loid) pollution and phytoremediation potential of native plants on a former gold mine in ghana. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-019-4317-4. (PMID: 10.1007/s11270-019-4317-4)
      Priya, A. K., Muruganandam, M., Ali, S. S., & Kornaros, M. (2023). Clean-up of heavy metals from contaminated soil by phytoremediation: A multidisciplinary and eco-friendly approach. Toxics, 11(5), 422. (PMID: 10.3390/toxics11050422)
      Putra, B., Jayanegara, A., & Susanto, I. (2024). Unraveling the effects of arbuscular mycorrhizal fungi on plant growth, nutrient content, and heavy metal accumulation in the contaminated soil: A meta-analysis. Applied Environmental Research. https://doi.org/10.35762/AER.2024006. (PMID: 10.35762/AER.2024006)
      Putra, B., Warly, L., Evitayani, E., & Utama, B. P. (2022). The role of arbuscular mycorrhizal fungi in phytoremediation of heavy metals and their effect on the growth of Pennisetum purpureum cv. Mott on gold mine tailings in Muara Bungo, Jambi Indonesia. Biodiversitas Journal of Biological Diversity, 23(1), 478–85. https://doi.org/10.13057/biodiv/d230151. (PMID: 10.13057/biodiv/d230151)
      Rajendran, S., Priya, T. A. K., Khoo, K. S., Hoang, T. K. A., Ng, H. S., Munawaroh, H. S. H., Karaman, C., Orooji, Y., & Show, P. L. (2022). A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.132369. (PMID: 10.1016/j.chemosphere.2021.132369)
      Rodríguez, E., Peralta-Videa, J. R., Sánchez-Salcido, B., Parsons, J. G., Romero, J., & Gardea-Torresdey, J. L. (2007). Improving gold phytoextraction in desert willow (Chilopsis linearis) using Thiourea: A spectroscopic investigation. Environmental Chemistry, 4(2), 98–108. https://doi.org/10.1071/EN06048. (PMID: 10.1071/EN06048)
      Romanova, T. E., & Shuvaeva, O. V. (2016). Fractionation of mercury in water hyacinth and pondweed from contaminated area of gold mine tailing. Water, Air, and Soil Pollution. https://doi.org/10.1007/s11270-016-2874-3. (PMID: 10.1007/s11270-016-2874-3)
      Romanova, T. E., Shuvaeva, O. V., & Belchenko, L. A. (2016). Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing. International journal of phytoremediation, 18(2), 190–4. https://doi.org/10.1080/15226514.2015.1073674. (PMID: 10.1080/15226514.2015.1073674)
      Sampanpanish, P. (2018). Arsenic, manganese, and cyanide removal in a tailing storage facility for a gold mine using phytoremediation. Remediation, 28(3), 83–89. https://doi.org/10.1002/rem.21563. (PMID: 10.1002/rem.21563)
      Samsuri, A. W., Tariq, F. S., Karam, D. S., Aris, A. Z., & Jamilu, G. (2019). The effects of rice husk ashes and inorganic fertilizers application rates on the phytoremediation of gold mine tailings by vetiver grass. Applied Geochemistry. https://doi.org/10.1016/j.apgeochem.2019.104366. (PMID: 10.1016/j.apgeochem.2019.104366)
      Sharma, Pooja. (2021). Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology, 328, 124835. (PMID: 10.1016/j.biortech.2021.124835)
      Sharma, P., Tripathi, S., & Chandra, R. (2020). Phytoremediation potential of heavy metal accumulator plants for waste management in the pulp and paper industry. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04559. (PMID: 10.1016/j.heliyon.2020.e04559)
      Sharma, Pooja, Tripathi, Sonam, & Chandra, Ram. (2021). Highly efficient phytoremediation potential of metal and metalloids from the pulp paper industry waste employing Eclipta alba (L) and Alternanthera philoxeroide (L): Biosorption and pollution reduction. Bioresource Technology. https://doi.org/10.1016/j.biortech.2020.124147. (PMID: 10.1016/j.biortech.2020.124147)
      Sharma, P., Tripathi, S., Purchase, D., & Chandra, R. (2021). Integrating phytoremediation into treatment of pulp and paper industry wastewater: Field observations of native plants for the detoxification of metals and their potential as part of a multidisciplinary strategy. Journal of Environmental Chemical Engineering. https://doi.org/10.1016/j.jece.2021.105547. (PMID: 10.1016/j.jece.2021.105547)
      Shen, X., Dai, M., Yang, J., Sun, L., Tan, X., Peng, C., Ali, I., & Naz, I. (2022). A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere, 291, 132979. (PMID: 10.1016/j.chemosphere.2021.132979)
      Tan, H. W., Pang, Y. L., Lim, S., & Chong, W. C. (2023). A state-of-the-art of phytoremediation approach for sustainable management of heavy metals recovery. Environmental Technology and Innovation. https://doi.org/10.1016/j.eti.2023.103043. (PMID: 10.1016/j.eti.2023.103043)
      Tariq, F. S., Samsuri, A. W., Karam, D. S., & Aris, A. Z. (2016). Phytoremediation of gold mine tailings amended with iron-coated and uncoated rice husk ash by vetiver grass (Vetiveria zizanioides (Linn.) nash). Applied and Environmental Soil Science. https://doi.org/10.1155/2016/4151898. (PMID: 10.1155/2016/4151898)
      Tibane, L. V., & Mamba, D. (2023). Environmental risk assessment, principal component analysis, tracking the source of toxic heavy metals of solid gold mine waste tailings, South Africa. Environmental Forensics. https://doi.org/10.1080/15275922.2023.2172478. (PMID: 10.1080/15275922.2023.2172478)
      Wanitsawatwichai, K., & Sampanpanish, P. (2021). The combination of phytoremediation and electrokinetics remediation technology on arsenic contaminated remediation in tailing storage facilities from gold mine. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e07736. (PMID: 10.1016/j.heliyon.2021.e07736)
      Weiersbye, I. M., Witkowski, E. T. F., & Reichardt, M. (2006). Floristic composition of gold and uranium tailings dams, and adjacent polluted areas, on south Africa’s deep-level mines. Bothalia, 36(1), 101–127. https://doi.org/10.4102/abc.v36i1.349. (PMID: 10.4102/abc.v36i1.349)
      Wong, H. K. T., Gauthier, A., & Nriagu, J. O. (1999). Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Science of the Total Environment, 228(1), 35–47. https://doi.org/10.1016/S0048-9697(99)00021-2. (PMID: 10.1016/S0048-9697(99)00021-2)
      Xiao, R., Wang, S., Li, R., Wang, J. J., & Zhang, Z. (2017). Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicology and Environmental Safety, 141, 17–24. https://doi.org/10.1016/j.ecoenv.2017.03.002. (PMID: 10.1016/j.ecoenv.2017.03.002)
      Xu, D. M., Zhan, C. L., Liu, H. X., & Lin, H. Z. (2019). A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings. Environmental Science and Pollution Research, 26(35), 35657. (PMID: 10.1007/s11356-019-06555-3)
      Xu, Z., dos Muchangos, L. S., Ito, L., & Tokai, A. (2023). Cost and health benefit analysis of remediation alternatives for the heavy-metal-contaminated agricultural land in a Pb–Zn mining town in China. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.136503. (PMID: 10.1016/j.jclepro.2023.136503)
      Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods. https://doi.org/10.1177/1094428114562629. (PMID: 10.1177/1094428114562629)
    • Contributed Indexing:
      Keywords: Bibliometric analysis; Environmental remediation; Gold mine tailings; Heavy metals; Phytoremediation
      Local Abstract: [Publisher, German] Diese Studie bewertet die Wirksamkeit von Phytosanierungsstrategien bei der Minderung der Umweltauswirkungen von Rückständen aus Goldminen durch eine bibliometrische und systematische Überprüfung. Unter Verwendung der PRISMA-Methodik wurden 45 primäre Forschungsartikel ausgewählt und analysiert, um wichtige Trends undErkenntnisse in der Phytosanierungsforschung aufzuzeigen. Die Überprüfung umfasst über zwei Jahrzehnte Forschung mit einer bemerkenswerten jährlichen Wachstumsrate von 2,81 % und bedeutenden Beiträgen aus Ländern wie Indonesien, Malaysia und Südafrika. Wichtige Ergebnisse betonen die Variabilität des Erfolgs von Phytosanierung in Abhängigkeit von Pflanzenarten, Standortbedingungen und Sanierungstechniken. Hervorgehobene Pflanzen sind unter anderem Vetivergras, Siamesisches Unkraut und Wasserhyazinthen, die ein erhebliches Potenzial für die Aufnahme von Schwermetallen und die Bodenstabilisierung zeigen. Die Studie unterstreicht auch die Bedeutung der Optimierung von Pflanzen-Mikroben-Interaktionen und der Anwendung standortspezifischer Ansätze zur Verbesserung der Sanierungseffizienz. Zukünftige Forschungsrichtungen konzentrieren sich auf die genetische Veränderung von Pflanzen, Feldversuche und die Integration fortschrittlicher Überwachungstechnologien. Insgesamt hebt diese umfassende Überprüfung das vielversprechende Potenzial der Phytosanierung als nachhaltige und effektive Strategie für den Umgang mit Rückständen aus Goldminen hervor und plädiert für eine kontinuierliche Forschung und politische Unterstützung, um diese grüne Technologie im Umweltmanagement voranzutreiben. [Publisher, French] Cette étude évalue l’efficacité des stratégies de phytoremédiation dans l’atténuation des impacts environnementaux des résidus de mines d’or à travers une revue bibliométrique et systématique. En utilisant la méthodologie PRISMA, 45 articles de recherche primaires ont été sélectionnés et analysés, mettant en évidence les tendances et les perspectives clés de la recherche sur la phytoremédiation. La revue couvre plus de deux décennies de recherche, avec un taux de croissance annuel notable de 2,81 % et des contributions significatives de pays comme l’Indonésie, la Malaisie et l’Afrique du Sud. Les résultats clés soulignent la variabilité du succès de la phytoremédiation selon les espèces végétales, les conditions du site et les techniques de remédiation. Les plantes mises en avant incluent la vétiver, la mauvaise herbe de Siam et la jacinthe d’eau, qui démontrent un potentiel significatif dans l’absorption des métaux lourds et la stabilisation des sols. L’étude souligne également l’importance d’optimiser les interactions plantes-microbes et d’adopter des approches spécifiques aux sites pour améliorer l’efficacité de la remédiation. Les opportunités de recherche future identifiées incluent l’ingénierie génétique des plantes, les essais sur le terrain et l’intégration de technologies de surveillance avancées. Globalement, cette revue exhaustive met en avant le potentiel prometteur de la phytoremédiation en tant que stratégie durable et efficace pour gérer les résidus de mines d’or, appelant à une recherche continue et à un soutien politique pour faire progresser cette technologie verte dans la gestion environnementale. [Publisher, Spanish; Castilian] Este estudio evalúa la eficacia de las estrategias de fitorremediación en mitigar los impactos ambientales de los residuos de minas de oro mediante una revisión bibliométrica y sistemática. Utilizando la metodología PRISMA, se seleccionaron y analizaron 45 artículos de investigación primarios, destacando las principales tendencias y perspectivas en la investigación sobre fitorremediación. La revisión abarca más de dos décadas de investigación, con una notable tasa de crecimiento anual del 2,81 % y contribuciones significativas de países como Indonesia, Malasia y Sudáfrica. Los hallazgos clave enfatizan la variabilidad en el éxito de la fitorremediación según las especies de plantas, las condiciones del sitio y las técnicas de remediación. Las plantas destacadas incluyen la hierba vetiver, la maleza de Siam y el jacinto de agua, que demuestran un potencial significativo en la absorción de metales pesados y la estabilización del suelo. El estudio también destaca la importancia de optimizar las interacciones planta-microbio y emplear enfoques específicos para el sitio para mejorar la eficiencia de la remediación. Se identifican oportunidades futuras de investigación centradas en la ingeniería genética de plantas, ensayos de campo y la integración de tecnologías avanzadas de monitoreo. En general, esta revisión integral destaca el prometedor potencial de la fitorremediación como una estrategia sostenible y efectiva para gestionar los residuos de minas de oro, abogando por una investigación continua y un apoyo político para avanzar en esta tecnología verde en la gestión ambiental. [Publisher, Italian] Questo studio valuta l'efficacia delle strategie di fitorisanamento nel mitigare gli impatti ambientali dei residui delle miniere d'oro attraverso una revisione bibliometrica e sistematica. Utilizzando la metodologia PRISMA, sono stati selezionati e analizzati 45 articoli di ricerca primari, evidenziando le principali tendenze e intuizioni nella ricerca sul fitorisanamento. La revisione copre oltre due decenni di ricerca, con un tasso di crescita annuale notevole del 2,81% e contributi significativi da paesi come Indonesia, Malesia e Sudafrica. I risultati principali evidenziano la variabilità del successo del fitorisanamento in base alle specie vegetali, alle condizioni del sito e alle tecniche di risanamento. Le piante più rilevanti includono la vetiver, la siamese e il giacinto d'acqua, che dimostrano un potenziale significativo nell'assorbimento dei metalli pesanti e nella stabilizzazione del suolo. Lo studio sottolinea anche l'importanza di ottimizzare le interazioni pianta-microrganismo e di adottare approcci specifici per sito per migliorare l'efficienza del risanamento. Le opportunità di ricerca futura si concentrano sull'ingegneria genetica delle piante, le prove sul campo e l'integrazione di tecnologie avanzate di monitoraggio. Complessivamente, questa revisione completa evidenzia il promettente potenziale del fitorisanamento come strategia sostenibile ed efficace per gestire i residui delle miniere d'oro, sostenendo la ricerca continua e il supporto politico per avanzare questa tecnologia verde nella gestione ambientale.
    • Accession Number:
      7440-57-5 (Gold)
      0 (Soil Pollutants)
      0 (Metals, Heavy)
      0 (Industrial Waste)
    • Publication Date:
      Date Created: 20241211 Date Completed: 20241211 Latest Revision: 20241211
    • Publication Date:
      20241211
    • Accession Number:
      10.1007/s10653-024-02317-4
    • Accession Number:
      39661228