Dynamic trends in land surface temperature and land use/land cover transitions in semi-arid metropolitan city, Jaipur.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Khajuria N;Khajuria N; Kaushik SP; Kaushik SP
  • Source:
    Environmental monitoring and assessment [Environ Monit Assess] 2024 Dec 10; Vol. 197 (1), pp. 47. Date of Electronic Publication: 2024 Dec 10.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • Publication Information:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • Subject Terms:
    • Abstract:
      The increasing surface heat in metropolitan areas is one of the biggest issues, especially as natural surfaces are being replaced by impermeable concrete surfaces. This study uses Landsat data (1991-2022) to examine the spatio-temporal dynamics of LST and LULC in Jaipur, highlighting the impact of urban expansion and the city's semi-arid nature on the thermal landscape. We have used the maximum likelihood classifier for supervised LULC classification and the mono-window algorithm for retrieving LST. The evaluation is done using buffer analysis. Furthermore, to assess the interrelationship between LST and LULC indices (NDVI & NDBI), regression analysis is used. The CA-ANN model is employed to project LSTs of 2032 and 2042. The findings indicate that the built-up land in the study area grew by 52.80% from 1991-2022. Most of this expansion has come at the expense of agriculture/open land, and vegetation cover. The mean LST in the city has risen by 5.9 °C, with the inner zone (B1) increasing from 35.44 °C to 41.93 °C, indicating urbanisation-induced heat stress. In the outer zones (B5-B6), dry sandy and rocky soils contribute to elevated temperatures. Water bodies show the lowest LST, while open and barren lands have the highest. LST exhibit a positive correlation with NDBI and a weak negative correlation with NDVI. Predictions indicate that by 2042, about 99% of the urban landscape will encounter surface temperatures above 40 °C, with 28.79% exceeding 45 °C. Raised temperatures could exacerbate the UHI effect, leading to serious health and environmental concerns.
      Competing Interests: Declarations. All authors have read, understood, and have complied as applicable with the statement on "Ethical responsibilities of Authors" as found in the Instructions for Authors. Consent for publication: The authors provide their explicit approval for the publication of their research work. Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Abbas, Z., Yang, G., Zhong, Y., & Zhao, Y. (2021). Spatiotemporal change analysis and future scenario of LULC using the CA-ANN approach: A case study of the greater bay area. China. Land, 10(6), 584. https://doi.org/10.3390/land10060584. (PMID: 10.3390/land10060584)
      Abutaleb, K., Ngie, A., Darwish, A., Ahmed, M., Arafat, S., & Ahmed, F. (2015). Assessment of urban heat island using remotely sensed imagery over Greater Cairo, Egypt. Advances in Remote Sensing, 4, 35–47. https://doi.org/10.4236/ars.2015.41004. (PMID: 10.4236/ars.2015.41004)
      Aggarwal, S. P., Praveen, K., Thakur, P. K., & Dadhwal, V. K. (2009). Remote sensing and GIS applications in Flood management, 24, 145–158. https://www.researchgate.net/publication/230660751_Remote_sensing_and_GIS_Applications_in_Flood_Management.
      Ahmad, M. N., Zhengfeng, S., Yaseen, A., Khalid, M. N., & Javed, A. (2022). The simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore. Photogrammetric Engineering & Remote Sensing, 88(12), 783–790. https://doi.org/10.14358/PERS.22-00071R2. (PMID: 10.14358/PERS.22-00071R2)
      Ahmed, S. (2018). Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 15–25. https://doi.org/10.1016/j.ejrs.2017.08.001. (PMID: 10.1016/j.ejrs.2017.08.001)
      Al-Alola, S. S., Alogayell, H. M., Alkadi, I. I., Mohamed, S. A., & Ismail, I. Y. (2021). Recognition and prediction of land dynamics and its associated impacts in Al-Qurayyat City and along Al-Shamal Train Pathway in Saudi Arabia. Sustainability, 13(17), 9913. https://doi.org/10.3390/su13179913. (PMID: 10.3390/su13179913)
      Alam, A., Bhat, M. S., & Maheen, M. (2020). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85, 1529–1543. https://doi.org/10.1007/s10708-019-10037-x. (PMID: 10.1007/s10708-019-10037-x)
      Ali, M. B., Jamal, S., Ahmad, M., & Saqib, M. (2024). Unriddle the complex associations among urban green cover, built-up index, and surface temperature using geospatial approach: A micro-level study of Kolkata Municipal Corporation for sustainable city. Theoretical and Applied Climatology, 155(5), 4139–4160. https://doi.org/10.1007/s00704-024-04873-2. (PMID: 10.1007/s00704-024-04873-2)
      Allbed, A., & Kumar, L. (2013). Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology: A review. Advances in Remote Sensing, 2(4), 41262. https://doi.org/10.4236/ars.2013.24040. (PMID: 10.4236/ars.2013.24040)
      Almalki, R., Khaki, M., Saco, P. M., & Rodriguez, J. F. (2022). Monitoring and mapping vegetation cover changes in arid and semi-arid areas using remote sensing technology: A review. Remote Sensing, 14, 5143. https://doi.org/10.3390/rs14205143. (PMID: 10.3390/rs14205143)
      Amindin, A., Pouyan, S., Pourghasemi, H. R., Yousefi, S., & Tiefenbacher, J. P. (2021). Spatial and temporal analysis of urban heat island using Landsat satellite images. Environmental Science and Pollution Research, 28(30), 41439–41450. https://doi.org/10.1007/s11356-021-13693-0. (PMID: 10.1007/s11356-021-13693-0)
      Amirtham, L. R., & Devadas, M. D. (2009). Analysis of land surface temperature and land use/land cover types using remote imagery- a case in Chennai City, India. The Seventh International Conference on Urban Climate, Yokohanma, Japan, July 3–4, 2009. https://www.researchgate.net/publication/233997605_ANALYSIS_OF_LAND_SURFACE_TEMPERATURE_AND_LAND_USELAND_COVER_TYPES_USING_REMOTE_SENSING_IMAGERY-A_CASE_IN_CHENNAI_CITY_INDIA . Accessed 5 Dec 2023.
      Angel, S. (2023). Urban expansion: Theory, evidence and practice. Buildings and Cities, 4(1), 124–138. https://doi.org/10.5334/bc.348. (PMID: 10.5334/bc.348)
      Aplin, P. (2004). Remote sensing: Land cover. Progress in Physical Geography: Earth and Environment, 28, 283–293. https://doi.org/10.1191/0309133304pp413pr. (PMID: 10.1191/0309133304pp413pr)
      Arnold, C. L., & Gibbons, C. J. (1996). Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association, 62(2), 243–258. https://doi.org/10.1080/01944369608975688. (PMID: 10.1080/01944369608975688)
      Baig, M. F., Mustafa, M. R. U., Baig, I., Takaijudin, H. B., & Zeshan, M. T. (2022). Assessment of land use land cover changes and future predictions using CA-ANN simulation for Selangor, Malaysia. Water, 14(3), 402. https://doi.org/10.3390/w14030402. (PMID: 10.3390/w14030402)
      Bala, S., & Dar, S. N. (2024). Dynamics of land use land cover and its impact on land surface temperature: A study of Faridabad District. India. Geojournal, 89(1), 30. https://doi.org/10.1007/s10708-024-11011-y. (PMID: 10.1007/s10708-024-11011-y)
      Bates, P. D. (2004). Remote sensing and flood inundation modelling. Hydrological Processes, 18(13), 2593–2597. https://doi.org/10.1002/hyp.5649. (PMID: 10.1002/hyp.5649)
      Becker, F., & Li, Z. L. (1990). Toward a local split-window method over land surface. International Journal of Remote Sensing, 11(3), 369–393. https://doi.org/10.1080/01431169008955028. (PMID: 10.1080/01431169008955028)
      Bhalli, M. N., & Ghaffar, A. (2015). Use of geospatial techniques in monitoring urban expansion and land use change analysis: A case of Lahore, Pakistan. Journal of Basic & Applied Sciences, 11, 265–273. https://doi.org/10.6000/1927-5129.2015.11.38. (PMID: 10.6000/1927-5129.2015.11.38)
      Bindi, M., Brandani, G., Dessi, A., Dibari, C., Ferrise, R., Moriondo, M., & Trombi, G. (2009). Impact of climate change on agricultural and natural ecosystems. American Journal of Environmental Sciences, 5(5), 633–638.
      Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 9(1–2), 161–173. https://doi.org/10.1080/02757259409532220. (PMID: 10.1080/02757259409532220)
      Census of India. (2011). Primary census abstract, census of India. Government of India.
      Chandra, S., Sharma, D., & Dubey, S. K. (2018a). Analysis of land change dynamics and indices using geospatial technology: A case of Jaipur City, India. International Journal of Research in Advent Technology, 6(11), 3160–3165. http://www.ijrat.org/downloads/Vol-6/nov-2018/Paper%20ID-611201808.pdf . Accessed 23 Aug 2022.
      Chandra, S., Sharma, D., & Dubey, S. K. (2018b). Linkage of urban expansion and land surface temperature using geospatial techniques for Jaipur City, India. Arabian Journal of Geosciences, 11, 1–12. https://doi.org/10.1007/s12517-017-3357-6. (PMID: 10.1007/s12517-017-3357-6)
      Chandra, S. (2019). Understanding the linkage of urbanization, land surface temperature and human health – a case of Jaipur City of Rajasthan, India. Ph.D. dissertation, Department of Environmental Sciences, School of Earth Sciences, Central University of Rajasthan, Bandarsindri Kishangarh, Rajasthan. http://www.ijrat.org/downloads/Vol-6/nov-2018/Paper%20ID-611201808.pdf . Accessed 23 Aug 2022.
      Chen, Y. H., Wang, J., & Li, X. B. (2002). A study on urban thermal field in summer based on satellite remote sensing. Remote Sensing for Land and Resources, 4(1), 55–59. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55.))/reference/referencespapers.aspx?referenceid=193211 . Accessed 3 Sept 2023.
      Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology. Mcgraw-Hill Book Company. http://ponce.sdsu.edu/Applied_Hydrology_Chow_1988.pdf . Accessed 16 Aug 2023.
      Chudnovsky, A., Ben-Dor, E., & Saaroni, H. (2004). Diurnal thermal behavior of selected urban objects using remote sensing measurements. Energy and Buildings, 36, 1063–1074. https://doi.org/10.1016/j.enbuild.2004.01.052. (PMID: 10.1016/j.enbuild.2004.01.052)
      Colding, J. (2007). Ecological land-use complementation for building resilience in urban ecosystems. Landscape and Urban Planning, 81, 46–55. https://doi.org/10.1016/j.landurbplan.2006.10.016. (PMID: 10.1016/j.landurbplan.2006.10.016)
      Congalton, R. G., & Green, K. (2008). Assessing the Accuracy of Remotely Sensed data: Principles and Practices. CRC Press, Taylor & Francis. https://doi.org/10.1201/9781420055139. (PMID: 10.1201/9781420055139)
      Davies, R. G., Barbosa, O., Fuller, R. A., Tratalos, J., Burke, N., Lewis, D., Warren, P. H., & Gaston, K. J. (2008). City-wide relationships between green spaces, urban land use and topography. Urban Ecosystems, 11, 269–287. https://doi.org/10.1007/s11252-008-0062-y. (PMID: 10.1007/s11252-008-0062-y)
      Dervisoglu, A. (2023). Investigation of the efficiency of satellite-derived LST data for mapping the meteorological parameters in Istanbul. Atmosphere, 14(4), 644. https://doi.org/10.3390/atmos14040644. (PMID: 10.3390/atmos14040644)
      Dinicola, R. S. (1990). Characterization and simulation of rainfall-runoff relations for headwater basins in Western King and Snohomish Counties, Washington. Water-Resources Investigations Report, 89, 4052. https://doi.org/10.3133/wri894052. (PMID: 10.3133/wri894052)
      Duraisamy, V., Bendapudi, R., & Jadhav, A. (2018). Identifying hotspots in land use land cover change and the drivers in a semi-arid region of India. Environment Monitoring and Assessment, 190(9), 535. https://doi.org/10.1007/s10661-018-6919-5. (PMID: 10.1007/s10661-018-6919-5)
      Esha, E. J., & Rahman, M. T. U. (2021). Simulation of future land surface temperature under the scenario of climate change using remote sensing & GIS techniques of northwestern Rajshahi district, Bangladesh. Environmental Challenges, 5, 100365. https://doi.org/10.1016/j.envc.2021.100365. (PMID: 10.1016/j.envc.2021.100365)
      Essa, W., Verbeiren, B., Kwast, J. V. D., Voorde, T. V. D., & Batelaan, O. (2012). Evaluation of the DisTrad thermal sharpening methodology for urban areas. International Journal of Applied Earth Observation and Geoinformation, 19, 163–172. https://doi.org/10.1016/j.jag.2012.05.010. (PMID: 10.1016/j.jag.2012.05.010)
      Fahad, S., Li, W., Valjarević, A., Kavroudakis, D., & Sharifi, A. (2023). The Impact of rapid urban growth on land use and land cover change and urban heat island: The case of Babuzai, Pakistan. https://doi.org/10.21203/rs.3.rs-2828285/v1.
      Faisal, A. A., Kafy, A., Al-Rakib, A., Akter, K. S., Raikwar, V., Jahir, D. M. A., Ferdousi, J., & Kona, M. A. (2021). Assessment and prediction of seasonal land surface temperature change using multi-temporal Landsat images and their impacts on agricultural yields in Rajshahi. Bangladesh. Environmental Challenges, 4, 100147. https://doi.org/10.1016/j.envc.2021.100147. (PMID: 10.1016/j.envc.2021.100147)
      Fan, C., Myint, S. W., Kaplan, S., Middel, A., Zheng, B., Rahman, A., Huang, H. P., Brazel, A., & Blumberg, D. G. (2017). Understanding the impact of urbanization on surface urban heat islands- a longitudinal analysis of the oasis effect in subtropical desert cities. Remote Sensing, 9(7), 672. https://doi.org/10.3390/rs9070672. (PMID: 10.3390/rs9070672)
      Farid, N., Moazzam, M. F. U., Ahmad, S. R., Coluzzi, R., & Lanfredi, M. (2022). Monitoring the impact of rapid urbanization on land surface temperature and assessment of surface urban heat island using landsat in megacity (Lahore) of Pakistan. Frontiers in Remote Sensing, 3, 897397. https://doi.org/10.3389/frsen.2022.897397. (PMID: 10.3389/frsen.2022.897397)
      Fashae, O. A., Adagbasa, E. G., Olusola, A. O., & Obateru, R. O. (2020). Land use/land cover change and land surface temperature of Ibadan and environs, Nigeria. Environmental Monitoring and Assessment, 192(2), 1–18. https://doi.org/10.1007/s10661-019-8054-3. (PMID: 10.1007/s10661-019-8054-3)
      Feizizadeh, B., & Blaschke, T. (2013). Examining urban heat Island relations to land use and air pollution: Multiple endmember spectral mixture analysis for thermal remote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1749–1756. https://doi.org/10.1109/JSTARS.2013.2263425. (PMID: 10.1109/JSTARS.2013.2263425)
      Feng, H., Liu, H., & Wu, L. (2014). Monitoring the relationship between the land surface temperature change and urban growth in Beijing China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 4010–4019. https://doi.org/10.1109/JSTARS.2013.2264718. (PMID: 10.1109/JSTARS.2013.2264718)
      Feng, L., Liu, Y., Feng, Z., & Yang, S. (2021). Analysing the spatiotemporal characteristics of climate comfort in China based on 2005–2018 MODIS data. Theoretical and Applied Climatology, 143, 1235–1249. https://doi.org/10.1007/s00704-020-03516-6. (PMID: 10.1007/s00704-020-03516-6)
      Gallo, K. P., Tarpley, J. D., McNab, A. L., & Karl, T. R. (1995). Assessment of urban heat islands: A satellite perspective. Atmospheric Research, 37(1–3), 37–43. https://ui.adsabs.harvard.edu/abs/1995AtmRe.37...37G/abstract . Accessed 12 Sept 2023.
      Galvez, R. A., Roa-Quiaoit, H. A., Dagoc, F. L., Guihawan, J., & Suson, P. (2024). Modeling the influence of, land cover dynamics on spatio-temporal variations in land surface temperature in Cagayan de Oro River basin, Mindanao, Philippines. Modeling Earth Systems and Environment, 10(1), 899–912. https://doi.org/10.1007/s40808-023-01834-y. (PMID: 10.1007/s40808-023-01834-y)
      Gaston, K. J., Warren, P. H., Thompson, K., & Smith, R. M. (2005). Urban domestic gardens (IV): The extent of the resource and its associated features. Biodiversity & Conservation, 14, 3327–3349. https://doi.org/10.1007/s10531-004-9513-9. (PMID: 10.1007/s10531-004-9513-9)
      Gebreyesus, T., Yeshitela, K., Fetene, A., & Jauregui, C. H. (2023). Study on the land surface cover dynamics of built-up areas and its implication for sustainable urban planning in Hawassa city, Ethiopia. GeoJournal, 88(2), 2287–2305. https://doi.org/10.21203/rs.3.rs-1538652/v1. (PMID: 10.21203/rs.3.rs-1538652/v1)
      Gharaibeh, A., Shaamala, A., Obeidat, R., & Al-Kofahi, S. (2020). Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon, 6(9), e05092. https://doi.org/10.1016/j.heliyon.2020.e05092. (PMID: 10.1016/j.heliyon.2020.e05092)
      Gillies, R. R., Kustas, W. P., & Humes, K. S. (2010). A verification of the “triangle” method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference vegetation Index (NDVI) and surface. International Journal of Remote Sensing, 18(15), 63–78. https://doi.org/10.1080/014311697217026. (PMID: 10.1080/014311697217026)
      Guha, S., Govil, H., Dey, A., & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1), 667–678. https://doi.org/10.1080/22797254.2018.1474494. (PMID: 10.1080/22797254.2018.1474494)
      Guzman, L. A., Escobar, F., Peña, J., & Cardona, R. (2020). A cellular automata-based land-use model as an integrated spatial decision support system for urban planning in developing cities: The case of the Bogotá region. Land Use Policy, 92, 104445. https://doi.org/10.1016/j.landusepol.2019.104445. (PMID: 10.1016/j.landusepol.2019.104445)
      Halder, B., Bandyopadhyay, J., & Banik, P. (2021). Evaluation of the climate change impact on urban heat island based on land surface temperature and geospatial indicators. International Journal of Environmental Research, 15, 819–835. https://doi.org/10.1007/s41742-021-00356-8. (PMID: 10.1007/s41742-021-00356-8)
      Hang, H. T., & Rahman, A. (2018). Characterization of thermal environment over heterogeneous surface of National Capital Region (NCR), India using LANDSAT-8 sensor for regional planning studies. Urban Climate, 24(1), 1–18. https://doi.org/10.1016/j.uclim.2018.01.001. (PMID: 10.1016/j.uclim.2018.01.001)
      Hartmann, D. L., Tank, A. M. G. K., & Rusticucci, M. (2013). IPCC 5th assessment report, climate change 2013: The physical science basis. https://www.ipcc.ch/report/ar5/wg1/ . Accessed 16 Feb 2024.
      Hazarika, A., Saikia, J., & Saikia, S. (2024). Evaluating the scenario of urban blue-green space in Tezpur town of Assam using geo-technical approach. Acta Geophysica, 1–15. https://doi.org/10.21203/rs.3.rs-3398688/v1.
      Ishola, K. A., Okogbue, E. C., & Adeyeri, O. E. (2016). Dynamics of surface urban biophysical compositions and its impact on land surface thermal field. Modelling Earth Systems and Environment, 2, 1–20. https://link.springer.com/article/10.1007/s40808-016-0265-9 . Accessed 3 sept 2023.
      Jalan, S., & Sharma, K. (2014). Spatio-temporal assessment of land use/land cover dynamics and urban heat island of Jaipur City using satellite data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 8, 767–772. https://doi.org/10.5194/isprsarchives-XL-8-767-2014. (PMID: 10.5194/isprsarchives-XL-8-767-2014)
      Jenerette, G. D., Harlan, S. L., Buyantuev, A., Stefanov, W. L., Declet-Barreto, J., Ruddell, B. L., Myint, S. W., Kaplan, S., & Li, X. (2016). Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ, USA. Landscape Ecology, 31, 745–760. https://www.ialena.org/uploads/9/4/8/2/94821076/jenerette_etal_2016.pdf . Accessed 5 Dec 2023.
      Jones, H. G., & Rotenberg, E. (2001). Energy, radiation and temperature regulation in plants. Encyclopedia of Life Sciences, John Wiley & Sons, Ltd. https://doi.org/10.1038/npg.els.0003199.
      Kabisch, N., Remahne, F., Ilsemann, C., & Fricke, L. (2023). The urban heat island under extreme heat conditions: A case study of Hannover, Germany. Scientific Reports, 13, 23017. https://doi.org/10.1038/s41598-023-49058-5. (PMID: 10.1038/s41598-023-49058-5)
      Kafy, A. A., Faisal, A. A., Sikdar, S., Hasan, M., Rahman, M., Khan, M. H., & Islam, R. (2020). Impact of LULC changes on LST in Rajshahi District of Bangladesh: A remote sensing approach. Journal of Geographical Studies, 3, 11–23. https://doi.org/10.21523/gcj5.19030102. (PMID: 10.21523/gcj5.19030102)
      Kafy, A. A., Naim, M. N. H., Subramanyam, G., Al- Faisal, A., Ahmed, N. U., Al Rakib, A., Kona, M. A., & Sattar, G. S. (2021a). Cellular Automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh. Environmental Challenges, 4, 100084. https://doi.org/10.1016/j.envc.2021.100084. (PMID: 10.1016/j.envc.2021.100084)
      Kafy, A. A., Al Rakib, A., Fattah, M. A., Rahaman, Z. A., & Sattar, G. S. (2021b). Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla. Bangladesh. Building and Environment, 208, 108573. https://doi.org/10.1016/j.buildenv.2021.108573. (PMID: 10.1016/j.buildenv.2021.108573)
      Kale, M. P., Chavan, M., Pardeshi, S., et al. (2016). Land-use and land-cover change in Western Ghats of India. Environment Monitoring and Assessment, 188, 387. https://doi.org/10.1007/s10661-016-5369-1. (PMID: 10.1007/s10661-016-5369-1)
      Kallel, A., Ksibi, M., Dhia, H. B., & Khélifi, N. (2018). Recent advances in environmental science from the Euro-Mediterranean and surrounding regions: proceedings of Euro-Mediterranean Conference for Environmental Integration (EMCEI-1), Tunisia 2017. Champ, Springer International Publishing.
      Kamaraj, M., & Rangarajan, S. (2022). Predicting the future land use and land cover changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin. Environmental Science and Pollution Research, 29(57), 86337–86348. https://doi.org/10.21203/rs.3.rs-616393/v1. (PMID: 10.21203/rs.3.rs-616393/v1)
      Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N., & Goldberg, A. (2010). Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23, 618–633. https://doi.org/10.1175/2009JCLI2900.1. (PMID: 10.1175/2009JCLI2900.1)
      Khan, Z., Saeed, A., & Bazai, M. H. (2020). Land use/land cover change detection and prediction using the CA-Markov model: A case study of Quetta city, Pakistan. Journal of Geographical and Social Sciences, 2, 164–182. https://www.researchgate.net/publication/355209516_Land_useland_cover_change_detection_and_prediction_using_the_CA-Markov_model_A_case_study_of_Quetta_city_Pakistan . Accessed 12 Feb 2024.
      Khan, F., Das, B., & Mohammad, P. (2022). Urban growth modeling and prediction of land use land cover change over Nagpur City, India using cellular automata approach. Geospatial technology for landscape and environmental management: sustainable assessment and planning (pp. 261–282) Springer. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%A2%09Khan%2C+F.%2C+B.+Das+and+P.+Mohammad.+2022.+Urban+growth+modeling+and+prediction+of+land+use+land+cover+change+over+Nagpur+City%2C+India+using+cellular+automata+approach.+In+Geospatial+Technology+for+Landscape+and+Environmental+Management%2C+261%E2%80%93282.+Singapore%3A+Springer.&btnG= . Accessed 12 Feb 2023.
      Khandelwal, S., Goyal, R., Kaul, N., & Mathew, A. (2018). Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science, 21(1), 87–94. https://doi.org/10.1016/j.ejrs.2017.01.005. (PMID: 10.1016/j.ejrs.2017.01.005)
      Kikon, N., Singh, P., Singh, S. K., & Vyas, A. (2016). Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustainable Cities and Society, 22, 19–28. https://doi.org/10.1016/j.scs.2016.01.005. (PMID: 10.1016/j.scs.2016.01.005)
      Kotharkar, R., & Surawar, M. (2016). Land use, land cover and population density impact on the formation of canopy urban heat island through traverse survey in the Nagpur urban area, India. Journal of Urban Planning and Development, 142(1), 04015003. https://doi.org/10.1061/(ASCE)UP.1943-5444.000. (PMID: 10.1061/(ASCE)UP.1943-5444.000)
      Kriegler, F. J., Malila, W. A., Nalepka, R. F., & Richardson, W. (1969). Pre-processing transformations and their effects on multispectral recognition. In Proceedings of the Sixth International Symposium on Remote Sensing of Environment (pp. 97–131). University of Michigan.  https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=788826 . Accessed 16 Dec 2023.
      Kuchimanchi, B. R., Ripoll-Bosch, R., Steenstra, F. A., Thomas, R., & Oosting, S. J. (2023). The impact of intensive farming systems on groundwater availability in dryland environments: A watershed level study from Telangana, India. Current Research in Environmental Sustainability, 5, 100198. https://doi.org/10.1016/j.crsust.2022.100198. (PMID: 10.1016/j.crsust.2022.100198)
      Kuhn, I., & Klotz, S. (2006). Urbanization and homogenization— comparing the floras of urban and rural areas in Germany. Biological Conservation, 127, 292–300. https://doi.org/10.1016/j.biocon.2005.06.033. (PMID: 10.1016/j.biocon.2005.06.033)
      Kulnu, A. S., Acharjee, S. A., Humtsoe, R. N., KuotsuLimasenla, R., Walling, B., Bharali, P., Alemtoshi, Gogoi, B., & Sorhie, V. (2024). Ethnoecological insights on wild fodder bioresources and their geospatial perspectives on sustainable piggery in Wokha and Zunheboto districts of Nagaland, India. Genetic Resources and Crop Evolution, 71(2), 691–720. https://doi.org/10.1007/s10722-023-01650-4. (PMID: 10.1007/s10722-023-01650-4)
      Kumar, K. S., Bhaskar, P. U., & Padmakumari, K. (2012). Estimation of land surface temperature to study urban heat island effect using Landsat ETM + IMAGE. International Journal of Engineering Science and Technology, 4(02), 771–778. https://www.researchgate.net/publication/285201553_Estimation_of_Land_Surface_Temperature_to_Study_Urban_Heat_Island_Effect_Using_Landsat_ETM_1_Image . Accessed 24 Apr 2024.
      Kumar, S., Chatterjee, U., David Raj, A., & Sooryamol, K. R. (2023). Global warming and climate crisis/extreme events. In U. Chatterjee, R. Shaw, S. Kumar, A. D. Raj, & S. Das (Eds.), Climate Crisis: Adaptive Approaches and Sustainability. Sustainable Development Goals Series. Springer. https://doi.org/10.1007/978-3-031-44397-8_1. (PMID: 10.1007/978-3-031-44397-8_1)
      Laux, P., Nguyen, P. N. B., Cullmann, J., & Kunstmann, H. (2017). Impacts of land-use/land- cover change and climate change on the regional climate in the central Vietnam. Water Resources Development and Management, 143–151. https://doi.org/10.1007/978-981-10-2624-9_9.
      Leprieur, C., Kerr, Y., Mastorchio, S., & Meunier, J. (2000). Monitoring vegetation cover across semi-arid regions: Comparison of remote observations from various scales. International Journal of Remote Sensing, 21, 281–300. https://doi.org/10.1080/014311600210830. (PMID: 10.1080/014311600210830)
      Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37. https://doi.org/10.1016/j.rse.2012.12.008. (PMID: 10.1016/j.rse.2012.12.008)
      Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and image interpretation. John Wiley & Sons Ltd.  https://www.geokniga.org/bookfiles/geokniga-remote-sensing-and-image-interpretation.pdf . Accessed 9 Mar 2024.
      Liping, C., Yujun, S., & Saeed, S. (2018). Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle. China. Plos ONE, 13(7), e0200493. https://doi.org/10.1371/journal.pone.0200493. (PMID: 10.1371/journal.pone.0200493)
      Loehle, C., & Scafetta, N. (2011). Climate change attribution using empirical decomposition of climatic data. Open Atmospheric Science Journal, 5, 1–4. https://doi.org/10.2174/1874282301105010074. (PMID: 10.2174/1874282301105010074)
      Loik, M. E., Breshears, D. D., Lauenroth, W. K., & Belnap, J. (2004). A multi-scale perspective of water pulses in dryland ecosystems: Climatology and ecohydrology of the western USA. Oecologia, 141, 269–281. https://www.cals.arizona.edu/research/breshears/Breshears%20&%20authors%20reprints/Loik%20et%20al%202004%20Oecol%20141%20269.PDF . Accessed 16 Feb 2024.
      Malik, K. (2014). Human development report 2014: Sustaining human progress: Reducing vulnerabilities and building resilience. United Nations Development Programme, New York., USA. https://hdr.undp.org/content/human-development-report-2014 . Accessed 9 Mar 2024.
      Mallick, J., Rahman, A., & Singh, C. K. (2013). Modelling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi- India. Advances in Space Research, Elsevier Science Publication, 52(2), 639–655. https://doi.org/10.1016/j.asr.2013.04.025. (PMID: 10.1016/j.asr.2013.04.025)
      Mann, R., Saini, D., Sharma, S., Dhorde, A., & Gupta, A. (2023). Paradoxical behaviour of rainfall and temperature over ecologically sensitive areas along the Western Ghats. Environmental Monitoring and Assessment, 195(12), 1461. https://doi.org/10.21203/rs.3.rs-2581616/v1. (PMID: 10.21203/rs.3.rs-2581616/v1)
      Meer, M. S., & Mishra, A. K. (2018). Analyzing Land Use and Land Cover and Socio Economic Changes in District Ananthnag Jammu and Kashmir Using Remote Sensing and GIS. International Journal of Advanced Multidisciplinary Scientific Research (IJAMSR), 1, 148–162.
      Meer, M. S., & Mishra, A. K. (2020a). Remote sensing application for exploring changes in land-use and land-cover over a district in Northern India. Journal of the Indian Society of Remote Sensing, 48, 525–534. https://doi.org/10.1007/s12524-019-01095-2. (PMID: 10.1007/s12524-019-01095-2)
      Meer, M. S., & Mishra, A. K. (2020b). Land use/land cover changes over a district in northern India using remote sensing and GIS and their impact on society and environment. Journal of the Geological Society of India, 95, 179–182. (PMID: 10.1007/s12594-020-1407-2)
      Meer, M. S., Mishra, A. K., & Rafiq, M. (2021). Spatio-temporal patterns of land use land cover changes over a district in Northern India and their impact on environment and society. Journal of the Geological Society of India, 97(6), 656–660. https://doi.org/10.1007/s12594-021-1741-z. (PMID: 10.1007/s12594-021-1741-z)
      Meer, M. S., Mishra, A. K., & Nagamani, K. (2022). Land use land cover changes on Asia’s largest freshwater lake and their impact on society and environment. Arabian Journal of Geosciences, 15(9), 830. https://doi.org/10.1007/s12517-022-10094-6. (PMID: 10.1007/s12517-022-10094-6)
      Mustak, S., Singh, D., & Srivastava, P. K. (2023). Advanced remote sensing for Urban and landscape ecology. Springer. (PMID: 10.1007/978-981-99-3006-7)
      Nayak, S., & Mandal, M. (2012). Impact of land-use and land-cover changes on temperature trends over western India. Current Science, 102(8), 1166–1173. https://www.jstor.org/stable/24107759 . Accessed 26 Apr 2024.
      Nichol, J. E. (1996). High-Resolution Surface Temperature Patterns Related to Urban Morphology in a Tropical City: A Satellite Based Study. Journal of Applied Meteorology, 35(1), 135–146. https://doi.org/10.1175/1520-0450(1996)035%3c0135:HRSTPR%3e2.0.CO;2. (PMID: 10.1175/1520-0450(1996)035<0135:HRSTPR>2.0.CO;2)
      Niclòs, R., Galve, L. M., Valiente, J. A., Estrela, M. J., & Coll, C. (2011). Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data. Remote Sensing of Environment, 115(8), 2126–2140. https://doi.org/10.1016/j.rse.2011.04.017. (PMID: 10.1016/j.rse.2011.04.017)
      Nieuwolt, S. (1966). The urban micro-climate of Singapore. The Journal of Tropical Geography, 22, 30–37.
      Oliveira, S., Andrade, H., & Vaz, T. (2011). The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Building and Environment, 46(11), 2186–2194. https://doi.org/10.1016/j.buildenv.2011.04.034. (PMID: 10.1016/j.buildenv.2011.04.034)
      Owen, T. W., Carlson, T. N., & Gillies, R. R. (2010). An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote Sensing, 19(9), 1663–1681. https://doi.org/10.1080/014311698215171. (PMID: 10.1080/014311698215171)
      Pal, S., & Ziaul, S. K. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 125–145. https://doi.org/10.1016/j.ejrs.2016.11.003. (PMID: 10.1016/j.ejrs.2016.11.003)
      Pandey, B., & Seto, K. C. (2015). Urbanization and agricultural land loss in India: Comparing satellite estimates with census data. Journal of Environmental Management, 148, 53–66. https://doi.org/10.1016/j.jenvman.2014.05.014. (PMID: 10.1016/j.jenvman.2014.05.014)
      Patel, S., Indraganti, M., & Jawarneh, R. N. (2024). Land surface temperature responses to land use dynamics in urban areas of Doha, Qatar. Sustainable Cities and Society, 104, 105273. https://doi.org/10.1016/j.scs.2024.105273. (PMID: 10.1016/j.scs.2024.105273)
      Paul, A., & Bhattacharji, M. (2023). Prediction of landuse/landcover using CA-ANN approach and its association with river-bank erosion on a stretch of Bhagirathi River of Lower Ganga Plain. GeoJournal, 88, 3323–3346. https://doi.org/10.1007/s10708-022-10814-1. (PMID: 10.1007/s10708-022-10814-1)
      Paul, S., Saxena, K. G., Nagendra, H., & Lele, N. (2021). Tracing land use and land cover change in peri-urban Delhi, India, over 1973–2017 period. Environmental Monitoring and Assessment, 193(2), 52. https://doi.org/10.1007/s10661-020-08841-x. (PMID: 10.1007/s10661-020-08841-x)
      Pauleit, S., & Duhme, F. (2000). Assessing the environmental performance of landcover types for urban planning. Landscape and Urban Planning, 52, 1–20. https://www.academia.edu/9713979/Assessing_the_environmental_performance_of_land_cover_types_for_urban_planning . Accessed 18 Mar 2024.
      Peng, X., Wu, W., Zheng, Y., Sun, J., Hu, T., & Wang, P. (2020). Correlation analysis of land surface temperature and topographic elements in Hangzhou, China. Scientific Reports, 10(1), 10451. https://www.nature.com/articles/s41598-020-67423-6 . Accessed 24 Jul 2023.
      Pontius, R. G., Jr., & Millones, M. (2011). Death to kappa and to some of my previous work: A better alternative. International Journal of Remote Sensing, 32, 4407–4429. https://doi.org/10.1080/01431161.2011.552923. (PMID: 10.1080/01431161.2011.552923)
      Pramanik, S., & Punia, M. (2020). Land use/land cover change and surface urban heat island intensity: Source-sink landscape-based study in Delhi, India. Environment, Development and Sustainability, 22, 27331–27356. https://doi.org/10.1007/s10668-019-00515-0. (PMID: 10.1007/s10668-019-00515-0)
      Qiao, Z., Wu, C., Zhao, D., Xu, X., Yang, J., Feng, L., Sun, Z., & Liu, L. (2019). Determining the Boundary and Probability of Surface Urban Heat Island Footprint Based on a Logistic Model. Remote Sensing, 11(11), 1368. https://doi.org/10.3390/rs11111368. (PMID: 10.3390/rs11111368)
      Qin, Z., Karnieli, A., & Berliner, P. (2010). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18), 3719–3746. https://doi.org/10.1080/014311600100069713. (PMID: 10.1080/014311600100069713)
      Rafiq, M., Mishra, A. K., & Meer, M. S. (2018). On land-use and land-cover changes over Lidder Valley in changing environment. Annals of GIS, 24(4), 275–285. https://doi.org/10.1080/19475683.2018.1520300. (PMID: 10.1080/19475683.2018.1520300)
      Rahaman, S., Jahangir, S., Haque, M. S., et al. (2021). Spatio-temporal changes of green spaces and their impact on urban environment of Mumbai, India. Environment, Development and Sustainability, 23, 6481–6501. https://doi.org/10.1007/s10668-020-00882-z. (PMID: 10.1007/s10668-020-00882-z)
      Rahman, A., Aggarwal, S. P., Netzband, M., & Fazal, S. (2011). Monitoring urban sprawl using remote sensing and GIS techniques of a fast-growing urban centre, India. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), 56–64. https://doi.org/10.1109/JSTARS.2010.2084072. (PMID: 10.1109/JSTARS.2010.2084072)
      Rahman, A., Kumar, S., Fazal, S., & Siddiqui, M. A. (2012). Assessment of land use/land cover change in the North-West District of Delhi using remote sensing and GIS techniques. Journal of Indian Society of Remote Sensing, 40(4), 689–697. https://doi.org/10.1007/s12524-011-0165-4. (PMID: 10.1007/s12524-011-0165-4)
      Rahman, A. (2007). Application of remote sensing and GIS technique for urban environmental management and sustainable development of, Delhi India. In M. Netzband, W. L. Stefnow, & C. L. Redman (Eds.), applied remote sensing for urban planning, governance and sustainability (pp. 165–197). Springer-Verlag Publishes. https://doi.org/10.1007/978-3-540-68009-3_8. (PMID: 10.1007/978-3-540-68009-3_8)
      Rajan, R., Jaganathan, R., & Bhakta, A. (2019). Feature based estimation of land surface temperature. Journal of Emerging Technologies and Innovative Research, 6(3), 439–445. http://www.jetir.org/papers/JETIR1903D71.pdf . Accessed 26 Apr 2024.
      Rasul, A., Balzter, H., Ibrahim, G. R. F., Hameed, H. M., Wheeler, J., Adamu, B., Ibrahim, S., & Najmaddin, P. M. (2018). Applying built-up and bare-soil indices from landsat 8 to Cities in dry climates. Land, 7, 81. https://doi.org/10.3390/land7030081. (PMID: 10.3390/land7030081)
      Rezapouraghdam, H., & Hidalgo-García, D. (2024). Urban development and climate change: Implications for Educational Tourism Destination Planning. Water, Air, & Soil Pollution, 235(5), 1–26. https://doi.org/10.1007/s11270-024-07125-1. (PMID: 10.1007/s11270-024-07125-1)
      Riaz, O., Ghaffar, A., & Butt, I. (2014). Modelling Land use Patterns of Lahore (Pakistan) using Remote Sensing and GIS. Global Journal of Science Frontier Research: H Environment & Earth Science, 14(1), 2249–4626. file:///C:/Users/admin/Downloads/4-Modelling-Land-use-Patterns.pdf.
      Rinner, C., & Hussain, M. (2011). Toronto’s urban heat island-Exploring the relationship between land use and surface temperature. Remote Sensing, 3(6), 1251–1265. https://doi.org/10.3390/rs3061251. (PMID: 10.3390/rs3061251)
      Ritchie, H., Samborska, V., & Roser, M. (2024). Urbanization. Our world in data. https://ourworldindata.org/urbanization . Accessed 8 May 2024.
      Rouse, J. W., Haas, R. H., Schell, J., & Deering, D. (1974). Monitoring the vernal advancement and retro-gradation (green wave effect) of natural vegetation. Progress Report. Texas A&M University, Remote Sensing Centre, College Station. No. NASA-CR-132982. https://ntrs.nasa.gov/citations/19750020419 . Accessed 1 Feb 2024.
      Saaroni, H., Amorim, J. H., Hiemstra, J. A., & Pearlmutter, D. (2018). Urban green infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Climate, 24, 94–110. https://doi.org/10.1016/j.uclim.2018.02.001. (PMID: 10.1016/j.uclim.2018.02.001)
      Sahana, M., Dutta, S., & Sajjad, H. (2018). Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. International Journal of Urban Sciences. https://doi.org/10.1080/12265934.2018.1488604. (PMID: 10.1080/12265934.2018.1488604)
      Saini, J., Gupta, A. K., Shrivastava, A., & Dhupper, R. (2024). Study of urban warming in Chandigarh union territory, India: Geospatial approach. Theoretical and Applied Climatology, 155(8), 8245–8261. https://doi.org/10.1007/s00704-024-05128-w. (PMID: 10.1007/s00704-024-05128-w)
      Sekertekin, A., Kutoglu, S. H., & Kaya, S. (2015). Evaluation of spatio-temporal variability in land surface temperature: A case study of Zonguldak, Turkey. Environmental Monitoring and Assessment, 188(1), 30. https://doi.org/10.1007/s10661-015-5032-2. (PMID: 10.1007/s10661-015-5032-2)
      Senanayake, I. P., Welivitiya, W. D. D. P., & Nadeeka, P. M. (2013). Assessment of green space requirement and site analysis in Colombo, Sri Lanka-a remote sensing and GIS approach. International Journal of Scientific & Engineering Research, 4(12). https://www.ijser.org/researchpaper/assessment-of-green-space-requirement-and-site-analysis-in-colombo.pdf . Accessed 8 Aug 2023.
      Sertel, E., Ormeci, C., & Robock, A. (2011). Modelling land cover change impact on the summer climate of the Marmara region, Turkey. International Journal of Global Warming, 3(1/2), 194–202. https://doi.org/10.1504/IJGW.2011.038379. (PMID: 10.1504/IJGW.2011.038379)
      Shahfahad, T. S., Rihan, M., Hang, H. T., Bhaskaran, S., & Rahman, A. (2021). Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities. Environment, Development and Sustainability, 24(3), 3762–3790. https://doi.org/10.1007/s10668-021-01587-7. (PMID: 10.1007/s10668-021-01587-7)
      Shahfahad, Naikoo, M. W., Islam, A. R. M. T., Mallick, J., & Rahman, A. (2022). Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Climate, 41, 101052. https://doi.org/10.1016/j.uclim.2021.101052. (PMID: 10.1016/j.uclim.2021.101052)
      Shahfahad, S. T., Naikoo, W., Rihan, M., Mohammad, M., & Rahman, A. (2024). Seasonal dynamics of land surface temperature and urban thermal comfort with land use land cover pattern in semi-arid Indian cities: Insights for sustainable Urban Management. Urban Climate, 57, 102105. https://doi.org/10.1016/j.uclim.2024.102105. (PMID: 10.1016/j.uclim.2024.102105)
      Shahmohamadi, P., Che-Ani, A. I., Maulud, K. N., Tawil, N. M., & Abdullah, N. A. (2011). The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Studies Research, 2011, 497524. https://doi.org/10.1155/2011/497524. (PMID: 10.1155/2011/497524)
      Sharma, R., Pradhan, L., Kumari, M., & Bhattacharya, P. (2021). Assessing urban heat islands and thermal comfort in Noida City using geospatial technology. Urban Climate, 35, 100751. https://doi.org/10.1016/j.uclim.2020.100751. (PMID: 10.1016/j.uclim.2020.100751)
      Shastri, V. (2020). Remaking livelihoods: Everyday struggles of the displaced - A study of the Dravyavati River Rejuvenation Project in Jaipur. M.A. dissertation, University of Basel. https://edoc.unibas.ch/85107/ . Accessed 1 Feb 2024.
      Somvanshi, S. S., & Kumari, M. (2020). Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data. Applied Computing and Geosciences, 7, 100032. https://doi.org/10.1016/j.acags.2020.100032. (PMID: 10.1016/j.acags.2020.100032)
      Sultana, S., & Satyanarayana, A. N. V. (2018). Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: Impact of urbanization. International Journal of Remote Sensing, 39(20), 6692–6730. https://doi.org/10.1080/01431161.2018.1466072. (PMID: 10.1080/01431161.2018.1466072)
      Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sensing, 12(7), 1135. https://doi.org/10.3390/rs12071135. (PMID: 10.3390/rs12071135)
      Tepanosyan, G., Muradyan, V., Hovsepyan, A., Pinigin, G., Medvedev, A., & Asmaryan, S. (2021). Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan. Armenia. Building and Environment, 187, 107390. https://doi.org/10.1016/j.buildenv.2020.107390. (PMID: 10.1016/j.buildenv.2020.107390)
      United Nations. (2012). World urbanization prospects: The 2011 revision. New York, USA. https://www.un.org/en/development/desa/population/publications/pdf/urbanization/WUP2011_Report.pdf . Accessed 8 Aug 2023.
      Ward, D. S., Mahowald, N. M., & Kloster, S. (2014). Potential climate forcing of land use and land cover change. Atmospheric Chemistry and Physics, 14(23), 12701–12724. https://doi.org/10.5194/acp-14-12701-2014. (PMID: 10.5194/acp-14-12701-2014)
      Weng, Q. (2001). A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), 1999–2014. https://doi.org/10.1080/713860788. (PMID: 10.1080/713860788)
      Weng, D., & Luo, Z. (1990). Mountainous terrain and climate. In D. Weng, & Z. Luo (Eds.), Meteorological Press (pp. 114–117). https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%A2%09Weng%2C+D.%2C+%26+Luo%2C+Z.+%281990%29.+Mountainous+Terrain+and+Climate.+In+D.+Weng%2C+%26+Z.+Luo+%28Eds.%29%2C+Meteorological+Press+%28pp.+114%E2%80%93117%29.+&btnG= . Accessed 30 Oct 2023.
      Willie, Y. A., Pillay, R., Zhou, L., & Orimoloye, I. R. (2019). Monitoring spatial pattern of land surface thermal characteristics and urban growth: A case study of King Williams using remote sensing and GIS. Earth Science Informatics, 12, 447–464. https://doi.org/10.1007/s12145-019-00391-2. (PMID: 10.1007/s12145-019-00391-2)
      Wu, Q., Li, H., Wang, R. S., Paulussen, J., He, Y., Wang, M., Wang, B. H., & Wang, Z. (2006). Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and Urban Planning, 78, 322–333. https://doi.org/10.1016/j.landurbplan.2005.10.002. (PMID: 10.1016/j.landurbplan.2005.10.002)
      Wu, Y., Li, S., & Yu, S. (2016). Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city. China. Environmental Monitoring and Assessment, 188(1), 54. https://doi.org/10.1007/s10661-015-5069-2. (PMID: 10.1007/s10661-015-5069-2)
      Yang, X., Chen, R., & Zheng, X. Q. (2015). Simulating land use change by integrating ANN-CA model and landscape pattern indices. Geomatics, Natural Hazards and Risk, 7, 1–15. https://doi.org/10.1080/19475705.2014.1001797. (PMID: 10.1080/19475705.2014.1001797)
      Yang, C., Yan, F., & Zhang, S. (2020). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. Journal of Environmental Management, 265, 110563. https://doi.org/10.1016/j.jenvman.2020.110563. (PMID: 10.1016/j.jenvman.2020.110563)
      Yuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 106(3), 375–386. https://doi.org/10.1016/j.rse.2006.09.003. (PMID: 10.1016/j.rse.2006.09.003)
      Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987. (PMID: 10.1080/01431160304987)
      Zhang, Y., Harris, A., & Balzter, H. (2015). Characterizing fractional vegetation cover and land surface temperature based on sub-pixel fractional impervious surfaces from Landsat TM/ETM+. International Journal of Remote Sensing, 36(16), 4213–4232. https://doi.org/10.1080/01431161.2015.1079344. (PMID: 10.1080/01431161.2015.1079344)
    • Contributed Indexing:
      Keywords: CA-ANN (Cellular Automata-Artificial Neural Network); LST (Land Surface Temperature); LULC (Land use/Land cover); Mono-window algorithm; UHI (Urban Heat Island)
    • Publication Date:
      Date Created: 20241210 Date Completed: 20241210 Latest Revision: 20241210
    • Publication Date:
      20241210
    • Accession Number:
      10.1007/s10661-024-13370-y
    • Accession Number:
      39656325