Complete Genome Sequence and In Vitro Probiotic Assessment of Bacillus subtilis DC-11 Isolated from Traditionally Fermented Idli Batter.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer International Country of Publication: United States NLM ID: 7808448 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-0991 (Electronic) Linking ISSN: 03438651 NLM ISO Abbreviation: Curr Microbiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York, Springer International.
    • Subject Terms:
    • Abstract:
      In this study, we reported in vitro probiotic assessment and complete genome sequence of Bacillus subtilis DC-11 isolated from traditionally fermented Idli Batter. The strain was evaluated for probiotic properties, biofilm formation, and antimicrobial compound production. The phenotypic safety was determined by accessing the strain's ability to produce enterotoxins, degrade mucin, and antibiotic sensitivity. Whole genome sequencing (WGS) was performed to identify the strain and determine genetic safety by analyzing the presence of plasmids, antibiotic resistance genes, and virulence factors. In the results, B. subtilis DC-11 showed 88.98% viability in gastric juice, and 98.60% viability in intestinal juice. It showed 18.33 ± 0.44% autoaggregation, 32.53 ± 3.11% adhesion to xylene, 0.98 ± 0.05 OD unit's adhesion to mucin (crystal violet equivalence at 550 nm), 21.2 ± 2.3% adhesion to Caco-2 cells, and - 22.3 ± 0.65 mV zeta potential. The highest co-aggregation was recorded with Escherichia coli (23.62 ± 0.70%). The strain was found negative for enterotoxin production, mucin degradation, and antibiotic resistance to the commonly used therapeutic antibiotics. It formed a good biofilm and capable of producing antimicrobial peptide subtilosin A with a molecular mass of 3400 Da. The peptide has inhibited the growth of methicillin-resistant Staphylococcus aureus (18.6 ± 0.58 mm). In genetic safety, no plasmids, antibiotic-resistant genes, and virulence factors were detected. Moreover, the strain showed close similarity with B. subtilis ATCC 6051 and proteins involved in probiotic attributes. In conclusion, B. subtilis DC-11 is safe potential probiotic candidate.
      Competing Interests: Declarations. Competing Interests: Ahire JJ was employed by Dr. Reddy’s Laboratories Limited. Dr. Reddy’s Laboratories had no direct and indirect role in the design/analysis/writing/publication of this research article. Other authors have no conflict of interest to declare. Ethical Approval: This study does not contain any work related with participation of humans and/or animals. Informed Consent: Not applicable.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Cuamatzin-García L, Rodríguez-Rugarcía P, El-Kassis EG, Galicia G, Meza-Jiménez ML, Baños-Lara MDR, Zaragoza-Maldonado DS, Pérez-Armendáriz B (2022) Traditional fermented foods and beverages from around the world and their health benefits. Microorganisms 10(6):1151. https://doi.org/10.3390/microorganisms10061151. (PMID: 10.3390/microorganisms10061151357446699227559)
      Sekar S, Mariappan S (2007) Usage of traditional fermented products by Indian rural folks and IPR. Indian J Tradi Knowl 6:111–120.
      Das A, Raychaudhuri U, Chakraborty R (2012) Cereal based functional food of Indian subcontinent: a review. J Food Sci Technol 49(6):665–672. https://doi.org/10.1007/s13197-011-0474-1. (PMID: 10.1007/s13197-011-0474-124293685)
      Kavitake D, Suryavanshi MV, Kandasamy S, Devi PB, Shouche Y, Shetty PH (2022) Bacterial diversity of traditional fermented food, Idli by high thorough-put sequencing. J Food Sci Technol 59(10):3918–3927. https://doi.org/10.1007/s13197-022-05421-4. (PMID: 10.1007/s13197-022-05421-4361933609525534)
      Ramalingam S, Kandasamy S, Bahuguna A, Kim M (2019) Nutritional and health benefits of Idli and Dosa. Fermented food products. CRC Press, Boca Raton, pp 181–194. https://doi.org/10.1201/9780429274787. (PMID: 10.1201/9780429274787)
      Ghosh D, Chattopadhyay P (2011) Preparation of idli batter, its properties and nutritional improvement during fermentation. J Food Sci Technol 48:610–615. https://doi.org/10.1007/s13197-010-0148-4. (PMID: 10.1007/s13197-010-0148-423572795)
      Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders MA (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66. (PMID: 10.1038/nrgastro.2014.6624912386)
      Lee NK, Kim WS, Paik HD (2019) Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol 28(5):1297–1305. https://doi.org/10.1007/s10068-019-00691-9. (PMID: 10.1007/s10068-019-00691-9316959286811671)
      Soares MB, Almada CN, Pereira EP, Ferreira BM, Balthazar CF, Khorshidian N, Rocha RS, Xavier-Santos D, Cruz AG, Ranadheera CS, Mortazavian AM (2023) Sporeforming probiotic bacteria: characteristics, health benefits, and technological aspects for their applications in foods and beverages. Trends Food Sci Technol 138:453–469. https://doi.org/10.1016/j.tifs.2023.06.029. (PMID: 10.1016/j.tifs.2023.06.029)
      Roe AL, Boyte ME, Elkins CA, Goldman VS, Heimbach J, Madden E, Oketch-Rabah H, Sanders ME, Sirois J, Smith A (2022) Considerations for determining safety of probiotics: a USP perspective. Regul Toxicol Pharmacol 136:105266. https://doi.org/10.1016/j.yrtph.2022.105266. (PMID: 10.1016/j.yrtph.2022.1052663620697710292223)
      Ahire JJ, Rohilla A, Kumar V, Tiwari A (2024) Quality management of probiotics: ensuring safety and maximizing health benefits. Curr Microbiol 81(1):1. https://doi.org/10.1007/s00284-023-03526-3. (PMID: 10.1007/s00284-023-03526-3)
      Aziz T, Naveed M, Shabbir MA, Sarwar A, Ali Khan A, Zhennai Y, Alharbi M, Alsahammari A, Alasmari AF (2023) Comparative genomics of food-derived probiotic Lactiplantibacillus plantarum K25 reveals its hidden potential, compactness, and efficiency. Front Microbiol 14:1214478. https://doi.org/10.3389/fmicb.2023.1214478. (PMID: 10.3389/fmicb.2023.12144783745572110346846)
      Aziz T, Naveed M, Jabeen K, Shabbir MA, Sarwar A, Zhennai Y, Alharbi M, Alshammari A, Alasmari AF (2023) Integrated genome based evaluation of safety and probiotic characteristics of Lactiplantibacillus plantarum YW11 isolated from Tibetan kefir. Front Microbiol 14:1157615. https://doi.org/10.3389/fmicb.2023.1157615. (PMID: 10.3389/fmicb.2023.11576153715272210158936)
      Aziz T, Xingyu H, Sarwar A, Naveed M, Shabbir MA, Khan AA, Ulhaq T, Shahzad M, Zhennai Y, Shami A, Sameeh MY, Alshareef SA, Tashkandi MA, Jalal RS (2023) Assessing the probiotic potential, antioxidant, and antibacterial activities of oat and soy milk fermented with Lactiplantibacillus plantarum strains isolated from Tibetan Kefir. Front Microbiol 14:1265188. https://doi.org/10.3389/fmicb.2023.1265188. (PMID: 10.3389/fmicb.2023.12651883781775310560984)
      Aziz T, Naveed M, Shabbir MA, Khan AA, Sarwar A, Ul Haq T, Zhennai Y, Alharbi M, Alasmari AF, Albekairi TH (2024) Assessment of the whole genome sequencing of Lactiplantibacillus plantarum 13–3 for elucidation of novel bacteriocin producing gene cluster and confirmation of its potential probiotic functionality and safety applications. CyTA - J Food. https://doi.org/10.1080/19476337.2024.2329753. (PMID: 10.1080/19476337.2024.2329753)
      Aziz T, Naveed M, Shabbir MA, Sarwar A, Khan AA, Hasnain A, Ul Haq T, Yang Z, Zinedine A, Rocha JM, Alharbi M (2024) Whole genome analysis of Tibetan kefir-derived Lactiplantibacillus plantarum 12–3 elucidates its genomic architecture, antimicrobial and drug resistance, potential probiotic functionality and safety. Front Biosci 29(4):147. https://doi.org/10.31083/j.fbl2904147. (PMID: 10.31083/j.fbl2904147)
      Aziz T, Hangyu H, Naveed M, Shabbir MA, Sarwar A, Nasbeeb J, Zhennai Y, Alharbi M (2024) Genotypic profiling, functional analysis, cholesterol-lowering ability, and angiotensin I-converting enzyme (ACE) inhibitory activity of probiotic Lactiplantibacillus plantarum K25 via different approaches. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-024-10258-8. (PMID: 10.1007/s12602-024-10258-838613617)
      Chaudhari DN, Ahire JJ, Devkatte AN, Kulthe AA (2024) Complete genome sequence and probiotic characterization of Lactobacillus delbrueckii subsp. indicus DC-3 isolated from traditional indigenous fermented milk. Probiotics Antimicrob Proteins. https://doi.org/10.1007/s12602-024-10385-2. (PMID: 10.1007/s12602-024-10385-239417972)
      Ahire JJ, Kashikar MS, Lakshmi SG, Madempudi R (2020) Identification and characterization of antimicrobial peptide produced by indigenously isolated Bacillus paralicheniformis UBBLi30 strain. 3 Biotech 10:112. https://doi.org/10.1007/s13205-020-2109-6. (PMID: 10.1007/s13205-020-2109-6321176737018909)
      Pedersen C, Jonsson H, Lindberg JE, Roos S (2004) Microbiological characterization of wet wheat distillers grain, with focus on isolation of lactobacilli with potential as probiotics. Appl Environ Microbiol 70:1522–1527. https://doi.org/10.1128/AEM.70.3.1522-1527.2004. (PMID: 10.1128/AEM.70.3.1522-1527.200415006774368301)
      Ahire JJ (2012) Studies on probiotic microorganism(s) and its biogenic metabolite(s). Ph.D. Dissertation, North Maharashtra University, India.
      Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31:438–442. https://doi.org/10.1046/j.1365-2672.2000.00845.x. (PMID: 10.1046/j.1365-2672.2000.00845.x11123552)
      Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33. https://doi.org/10.1111/j.1574-6968.1980.tb05599.x. (PMID: 10.1111/j.1574-6968.1980.tb05599.x)
      Ahire JJ, Sahoo S, Kashikar MS, Heerekar A, Lakshmi SG, Madempudi RS (2023) In vitro assessment of Lactobacillus crispatus UBLCp01, Lactobacillus gasseri UBLG36, and Lactobacillus johnsonii UBLJ01 as a potential vaginal probiotic candidate. Probiotics Antimicrob Proteins 15(2):275–286. https://doi.org/10.1007/s12602-021-09838-9. (PMID: 10.1007/s12602-021-09838-934417721)
      Ahire JJ, Dicks LM (2014) 2, 3-dihydroxybenzoic acid-containing nanofiber wound dressings inhibit biofilm formation by Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:2098–2104. https://doi.org/10.1128/AAC.02397-13. (PMID: 10.1128/AAC.02397-13244497814023714)
      Tuomola EM, Salminen SJ (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int J Food Microbiol 41(1):45–51. https://doi.org/10.1016/s0168-1605(98)00033-6. (PMID: 10.1016/s0168-1605(98)00033-69631336)
      Tjandrawinata RR, Kartawijaya M, Hartanti AW (2022) In vitro evaluation of the anti-hypercholesterolemic effect of Lactobacillus isolates from various sources. Front Microbiol 13:825251. https://doi.org/10.3389/fmicb.2022.825251. (PMID: 10.3389/fmicb.2022.825251352953048920493)
      Matuschek E, Brown DF, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 20:O255–O266. https://doi.org/10.1111/1469-0691.12373. (PMID: 10.1111/1469-0691.1237324131428)
      Clinical and Laboratory Standards Institute (2020) Performance standards for antimicrobial susceptibility testing. 30th ed. CSLI supplement M100.Wayne, PA. https://clsi.org/media/3481/m100ed30_sample.Pdf . Accessed 09 December 2023.
      Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16. https://doi.org/10.1093/jac/48.suppl_1.5. (PMID: 10.1093/jac/48.suppl_1.511420333)
      EFSA-Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10(6):2740. https://doi.org/10.2903/j.efsa.2012.2740. (PMID: 10.2903/j.efsa.2012.2740)
      Ahire JJ, Kashikar MS, Madempudi RS (2020) Survival and germination of Bacillus clausii UBBC07 spores in in vitro human gastrointestinal tract simulation model and evaluation of clausin production. Front Microbiol 11:1010. https://doi.org/10.3389/fmicb.2020.01010. (PMID: 10.3389/fmicb.2020.01010327333897358638)
      Blin K, Shaw S, Medema MH, Weber T (2024) The antiSMASH database version 4: additional genomes and BGCs, new sequence-based searches and more. Nucleic Acids Res 52(D1):D586–D589. https://doi.org/10.1093/nar/gkad984. (PMID: 10.1093/nar/gkad98437904617)
      van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46(W1):W278–W281. https://doi.org/10.1093/nar/gky383. (PMID: 10.1093/nar/gky383297882906030817)
      Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the expasy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607. (PMID: 10.1385/1-59259-890-0:571)
      Patel RK, Jain M (2012) NGS QC Toolkit:a toolkit for quality control of next generation sequencing data. PLoS ONE 7(2):e30619. https://doi.org/10.1371/journal.pone.0030619. (PMID: 10.1371/journal.pone.0030619223124293270013)
      Meier-Kolthoff JP, Göker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genomebased taxonomy. Nat Commun 10:2182. https://doi.org/10.1038/s41467-019-10210-3. (PMID: 10.1038/s41467-019-10210-3310977086522516)
      Meier-Kolthoff JP, Sardà Carbasse J, Peinado-Olarte RL, Göker M (2022) TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50:D801–D807. https://doi.org/10.1093/nar/gkab902. (PMID: 10.1093/nar/gkab90234634793)
      Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4. (PMID: 10.1007/s10482-017-0844-428204908)
      Alcock BP et al (2023) CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 51(D1):D690–D699. https://doi.org/10.1093/nar/gkac920. (PMID: 10.1093/nar/gkac92036263822)
      Liu B, Zheng D, Zhou S, Chen L, Yang J (2022) VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 50(D1):D912–D917. https://doi.org/10.1093/nar/gkab1107. (PMID: 10.1093/nar/gkab110734850947)
      Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing Group, Lau BY, Hoad G, Winsor GL, Brinkman FS (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45(W1): W30-W35. https://doi.org/10.1093/nar/gkx343.
      Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, Rocha EP, Vergnaud G, Gautheret D, Pourcel C (2018) CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 46(W1):W246–W251. https://doi.org/10.1093/nar/gky425. (PMID: 10.1093/nar/gky425297909746030898)
      Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5(1):1–6. https://doi.org/10.1038/srep08365. (PMID: 10.1038/srep08365)
      Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42(D1):D206–D214. https://doi.org/10.1093/nar/gkt1226. (PMID: 10.1093/nar/gkt122624293654)
      Valentino V, Magliulo R, Farsi D, Cotter PD, O’Sullivan O, Ercolini D, De Filippis F (2024) Fermented foods, their microbiome and its potential in boosting human health. Microb Biotechnol 17(2):e14428. https://doi.org/10.1111/1751-7915.14428. (PMID: 10.1111/1751-7915.144283839360710886436)
      Li Z, Zheng M, Zheng J, Gänzle MG (2023) Bacillus species in food fermentations: an underappreciated group of organisms for safe use in food fermentations. Curr Opinion Food Sci 50:101007. https://doi.org/10.1016/j.cofs.2023.101007. (PMID: 10.1016/j.cofs.2023.101007)
      Liu S, Zhao L, Li M, Zhu Y, Liang D, Ma Y, Sun L, Zhao G, Tu Q (2024) Probiotic Bacillus as fermentation agents: status, potential insights, and future perspectives. Food Chem X 22:101465. https://doi.org/10.1016/j.fochx.2024.101465. (PMID: 10.1016/j.fochx.2024.1014653879879711127159)
      Dabiré Y, Somda NS, Somda MK, Compaoré CB, Mogmenga I, Ezeogu LI, Traoré AS, Ugwuanyi JO, Dicko MH (2022) Assessment of probiotic and technological properties of Bacillus spp. isolated from Burkinabe Soumbala. BMC Microbiol 22(1):228. https://doi.org/10.1186/s12866-022-02642-7. (PMID: 10.1186/s12866-022-02642-7361758379523936)
      Wilks JC, Kitko RD, Cleeton SH, Lee GE, Ugwu CS, Jones BD, BonDurant SS, Slonczewski JL (2009) Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01652-08. (PMID: 10.1128/AEM.01652-08199660182832397)
      Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A (2019) Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol 103(16):6463–6472. https://doi.org/10.1007/s00253-019-09978-7. (PMID: 10.1007/s00253-019-09978-7312672316667406)
      Titz B, Rajagopala SV, Ester C, Häuser R, Uetz P (2006) Novel conserved assembly factor of the bacterial flagellum. J Bacteriol. https://doi.org/10.1128/jb.00820-06. (PMID: 10.1128/jb.00820-06169360391636259)
      Golnari M, Bahrami N, Milanian Z, Rabbani Khorasgani M, Asadollahi MA, Shafiei R, Fatemi SS (2024) Isolation and characterization of novel Bacillus strains with superior probiotic potential: comparative analysis and safety evaluation. Sci Rep 14(1):1457. https://doi.org/10.1038/s41598-024-51823-z. (PMID: 10.1038/s41598-024-51823-z3822871610791968)
      United States Food & Drug Administration (US-FDA) Generally Recognised as Safe (GRAS)-notice-inventory. (2024). ( https://www.fda.gov/food/gras-notice-inventory/recently-published-gras-notices-and-fda-letters ) Accessed 15th August 2024.
      Aitken A, Learmonth MP (2009) Protein determination by UV absorption. In: Walker J (ed) The protein protocols handbook. Humana Press, Totowa, pp 3–6. (PMID: 10.1007/978-1-59745-198-7_1)
      Field LD, Sternhell S, Kalman JR (2007) Organic structures from spectra. Wiley, New York.
      Shelburne CE, An FY, Dholpe V, Ramamoorthy A, Lopatin DE, Lantz MS (2007) The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J Antimicrob Chemother 59(2):297–300. https://doi.org/10.1093/jac/dkl495. (PMID: 10.1093/jac/dkl49517213266)
      Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073. https://doi.org/10.1007/s00217-007-0632-x. (PMID: 10.1007/s00217-007-0632-x)
      Jeon HL, Lee NK, Yang SJ, Kim WS, Paik HD (2017) Probiotic characterization of Bacillus subtilis P223 isolated from kimchi. Food Sci Biotechnol 26:1641–1648. https://doi.org/10.1007/s10068-017-0148-5. (PMID: 10.1007/s10068-017-0148-5302637016049726)
      Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800. https://doi.org/10.1093/molbev/msv150. (PMID: 10.1093/molbev/msv150261300814576710)
      Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106(951):645–668. (PMID: 10.1086/282802)
    • Accession Number:
      0 (Anti-Bacterial Agents)
      0 (Virulence Factors)
    • Publication Date:
      Date Created: 20241210 Date Completed: 20241210 Latest Revision: 20241210
    • Publication Date:
      20241210
    • Accession Number:
      10.1007/s00284-024-04014-y
    • Accession Number:
      39656272