Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Nonheme iron catalyst mimics heme-dependent haloperoxidase for efficient bromination and oxidation.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: American Association for the Advancement of Science Country of Publication: United States NLM ID: 101653440 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2375-2548 (Electronic) Linking ISSN: 23752548 NLM ISO Abbreviation: Sci Adv Subsets: MEDLINE
- Publication Information:
Original Publication: Washington, DC : American Association for the Advancement of Science, [2015]-
- Subject Terms:
- Abstract:
The [Fe]/H 2 O 2 oxidation system has found wide applications in chemistry and biology. Halogenation with this [Fe]/H 2 O 2 oxidation protocol and halide (X - ) in the biological system is well established with the identification of heme-iron-dependent haloperoxidases. However, mimicking such halogenation process is rarely explored for practical use in organic synthesis. Here, we report the development of a nonheme iron catalyst that mimics the heme-iron-dependent haloperoxidases to catalyze the generation of HOBr from H 2 O 2 /Br - with high efficiency. We discovered that a tridentate terpyridine (TPY) ligand designed for Fenton chemistry was optimal for FeBr 3 to form a stable nonheme iron catalyst [Fe(TPY)Br 3 ], which catalyzed arene bromination, Hunsdiecker-type decarboxylative bromination, bromolactonization, and oxidation of sulfides and thiols. Mechanistic studies revealed that Fenton chemistry ([Fe]/H 2 O 2 ) might operate to generate hydroxyl radical (HO • ), which oxidize bromide ion [Br - ] into reactive HOBr. This nonheme iron catalyst represents a biomimetic model for heme-iron-dependent haloperoxidases with potential applications in organic synthesis, drug discovery, and biology.
- References:
J Org Chem. 2016 Mar 18;81(6):2513-20. (PMID: 26886491)
Chem Commun (Camb). 2020 Mar 10;56(20):3089-3092. (PMID: 32052805)
Chem Asian J. 2016 Nov 22;11(22):3148-3158. (PMID: 27673277)
ACS Sustain Chem Eng. 2020 Feb 24;8(7):2602-2607. (PMID: 32117647)
J Am Chem Soc. 2013 Oct 2;135(39):14871-8. (PMID: 24060452)
J Am Chem Soc. 2023 Dec 13;145(49):26915-26924. (PMID: 38019775)
ACS Catal. 2022 Apr 15;12(8):4554-4559. (PMID: 35465241)
Chem Commun (Camb). 2020 May 21;56(41):5476-5479. (PMID: 32391821)
Chem Commun (Camb). 2015 Dec 18;51(97):17193-212. (PMID: 26462602)
Nat Commun. 2022 May 31;13(1):3025. (PMID: 35641490)
ACS Catal. 2023 Jun 06;13(12):8247-8261. (PMID: 37342830)
ACS Cent Sci. 2016 Nov 23;2(11):778-789. (PMID: 27981231)
Chem Biol Interact. 2019 Sep 1;310:108739. (PMID: 31288001)
J Am Chem Soc. 2023 Mar 1;145(8):4389-4393. (PMID: 36795537)
J Am Chem Soc. 2022 Jun 22;144(24):10752-10767. (PMID: 35537044)
Nat Nanotechnol. 2012 Aug;7(8):530-5. (PMID: 22751222)
Environ Sci Technol. 2021 Jun 15;55(12):8299-8308. (PMID: 34032409)
Methods Enzymol. 2018;605:141-201. (PMID: 29909824)
J Phys Chem A. 2017 Dec 7;121(48):9306-9319. (PMID: 29148774)
Nat Commun. 2014;5:3046. (PMID: 24429896)
Org Biomol Chem. 2019 Oct 30;17(42):9267-9274. (PMID: 31599911)
Nat Commun. 2012 Mar 06;3:720. (PMID: 22395611)
Chem Rev. 2021 Jan 13;121(1):412-484. (PMID: 33200917)
J Org Chem. 2010 Dec 3;75(23):8088-99. (PMID: 21043525)
Photochem Photobiol. 1985 Jun;41(6):635-42. (PMID: 2991956)
Chem Rev. 2016 Jun 22;116(12):6837-7042. (PMID: 27199233)
Nat Commun. 2019 Feb 22;10(1):901. (PMID: 30796210)
Proc Natl Acad Sci U S A. 2016 May 24;113(21):5910-5. (PMID: 27162342)
Angew Chem Int Ed Engl. 2020 Sep 14;59(38):16561-16571. (PMID: 32500643)
Chem Rev. 2014 Jan 22;114(2):901-26. (PMID: 24446748)
J Am Chem Soc. 2020 Feb 26;142(8):3891-3904. (PMID: 32026685)
Chem Commun (Camb). 2023 Nov 30;59(96):14289-14292. (PMID: 37964599)
Chem Rev. 2018 May 23;118(10):4912-4945. (PMID: 29630343)
Nat Commun. 2021 Jun 1;12(1):3268. (PMID: 34075034)
Inorg Chem. 2023 Jul 10;62(27):10613-10625. (PMID: 37369076)
Science. 2010 Jan 29;327(5965):566-71. (PMID: 20110502)
Nat Commun. 2022 Sep 12;13(1):5365. (PMID: 36097172)
Org Biomol Chem. 2018 Jun 13;16(23):4236-4242. (PMID: 29808199)
Chem Sci. 2023 Sep 8;14(38):10515-10523. (PMID: 37799989)
Org Biomol Chem. 2016 Dec 7;14(45):10630-10635. (PMID: 27781235)
Angew Chem Int Ed Engl. 2018 Nov 19;57(47):15583-15586. (PMID: 30255973)
J Am Chem Soc. 2017 Sep 13;139(36):12821-12829. (PMID: 28767230)
Acc Chem Res. 2015 Sep 15;48(9):2612-21. (PMID: 26280131)
Chem Rev. 2018 Feb 28;118(4):2249-2295. (PMID: 29460627)
Inorg Chem. 1998 Dec 28;37(26):6780-6784. (PMID: 11670813)
Science. 2007 Nov 2;318(5851):783-7. (PMID: 17975062)
Chem Commun (Camb). 2013 Dec 4;49(93):10926-8. (PMID: 24136302)
J Biol Chem. 1985 Oct 5;260(22):11962-9. (PMID: 4044583)
Nat Commun. 2022 Aug 11;13(1):4719. (PMID: 35953490)
J Environ Manage. 2018 Nov 15;226:256-263. (PMID: 30121461)
ACS Catal. 2018 Oct 5;8(10):9665-9674. (PMID: 30319886)
Chem Commun (Camb). 2015 Oct 4;51(77):14469-72. (PMID: 26277913)
- Accession Number:
42VZT0U6YR (Heme)
E1UOL152H7 (Iron)
EC 1.11.1.- (Peroxidases)
BBX060AN9V (Hydrogen Peroxide)
- Publication Date:
Date Created: 20241204 Date Completed: 20241204 Latest Revision: 20241207
- Publication Date:
20241209
- Accession Number:
PMC11616719
- Accession Number:
10.1126/sciadv.adq0028
- Accession Number:
39630909
No Comments.