Menu
×
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Ovarian expression of MerTK and its ligand Pros1 in non-pregnant estrus and pregnant mice.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Kirimlioglu E;Kirimlioglu E; Cernomorcenco A; Cernomorcenco A; Katirci E; Katirci E
- Source:
Journal of molecular histology [J Mol Histol] 2024 Nov 29; Vol. 56 (1), pp. 12. Date of Electronic Publication: 2024 Nov 29.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Netherlands Country of Publication: Netherlands NLM ID: 101193653 Publication Model: Electronic Cited Medium: Internet ISSN: 1567-2387 (Electronic) Linking ISSN: 15672379 NLM ISO Abbreviation: J Mol Histol Subsets: MEDLINE
- Publication Information: Publication: Dordrecht, The Netherlands : Springer Netherlands
Original Publication: Dordrecht, The Netherlands : Kluwer Academic Publishers, 2004- - Subject Terms: c-Mer Tyrosine Kinase*/metabolism ; c-Mer Tyrosine Kinase*/genetics ; Ovary*/metabolism ; Estrus*/metabolism ; Estrus*/physiology ; Protein S*/metabolism ; Protein S*/genetics; Animals ; Female ; Mice ; Pregnancy ; Corpus Luteum/metabolism ; Macrophages/metabolism ; Granulosa Cells/metabolism ; Ligands ; RNA, Messenger/metabolism ; RNA, Messenger/genetics
- Abstract: Aim: The interaction of MerTK, which negatively regulates immune responses, with its ligand Pros1 contributes to the resolution of apoptosis and inflammation, participating in the healing process of tissues. The levels of MerTK and Pros1, intensely expressed in macrophages (Mϕs), are affected by sex hormones. The expression levels of these proteins in Mϕs, which have a role in corpus luteum (CL) development or regression and folliculogenesis, were investigated in this study since their expressions have not been evaluated in pregnant mouse ovaries.
Method: We analyzed mouse ovaries from non-pregnant mice at estrus and gestation days 5, 8, and 15 (each n:10). We used qPCR to evaluate Mertk and Pros1 mRNA levels and assessed their protein expression and localization using immunohistochemistry and double immunofluorescence staining for co-localization.
Results: Mertk and Pros1 mRNA and protein levels significantly increased in GD15. MerTK and Pros1 protein levels in mouse CL on GD15 were significantly higher than all other groups. MerTK and Pros1 positive Mϕs were observed in CL of GD15 by double immunofluorescence. MerTK protein levels were increased in granulosa cells GD15 of primary and growing follicles.
Conclusion: Our study revealed for the first time that the expression of MerTK and Pros1 was significantly increased in CL at GD15 in mice. These results suggest that increased levels of MerTK andPros1 may enhance their interaction as receptor-ligand binding partners in CL potentially contributing to the balance of apoptosis and inflammation.
Competing Interests: Declarations. Institutional review board statement: The Animal Research Ethics Local Committee, Akdeniz University, approved the research by B.30.2.AKD.0.05.07.00/2 number. The Akdeniz University Institutional Animal Care and Use Committee standards carried out all experimental protocols on mice. Conflict of interest: The authors report no declarations of interest.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.) - References: Adamczak R, Ukleja-Sokołowska N, Lis K, Dubiel M (2021) Function of follicular cytokines: roles played during maturation, development and implantation of embryo. Med (Kaunas) 57. https://doi.org/10.3390/medicina57111251.
Ait-Oufella H, Pouresmail V, Simon T et al (2008) Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol 28:1429–1431. https://doi.org/10.1161/ATVBAHA.108.169078. (PMID: 10.1161/ATVBAHA.108.16907818467644)
Al-Zaeed N, Budai Z, Szondy Z, Sarang Z (2021) TAM kinase signaling is indispensable for proper skeletal muscle regeneration in mice. Cell Death Dis 12:611. https://doi.org/10.1038/s41419-021-03892-5. (PMID: 10.1038/s41419-021-03892-5341201438197762)
Arici A, Oral E, Bukulmez O et al (1997) Monocyte chemotactic protein-1 expression in human preovulatory follicles and ovarian cells. J Reprod Immunol 32:201–219. https://doi.org/10.1016/s0165-0378(97)82476-x. (PMID: 10.1016/s0165-0378(97)82476-x9080384)
Arroyo A, Kim B, Yeh J (2020) Luteinizing hormone action in human oocyte maturation and quality: signaling pathways, regulation, and clinical impact. Reprod Sci 27:1223–1252. https://doi.org/10.1007/s43032-019-00137-x. (PMID: 10.1007/s43032-019-00137-x32046451)
Bao H, Sun Y, Yang N et al (2021) Uterine Notch2 facilitates pregnancy recognition and corpus luteum maintenance via upregulating decidual Prl8a2. PLoS Genet 17:e1009786. https://doi.org/10.1371/journal.pgen.1009786. (PMID: 10.1371/journal.pgen.1009786344608168432799)
Binder MD, Kilpatrick TJ (2009) TAM receptor signalling and demyelination. Neurosignals 17:277–287. https://doi.org/10.1159/000231894. (PMID: 10.1159/00023189419816064)
Bulletti C, Bulletti FM, Sciorio R, Guido M (2022) Progesterone: the key factor of the beginning of life. Int J Mol Sci 23. https://doi.org/10.3390/ijms232214138.
Camenisch TD, Koller BH, Earp HS, Matsushima GK (1999) A novel receptor tyrosine kinase, mer, inhibits TNF-alpha production and lipopolysaccharide-induced endotoxic shock. J Immunol 162:3498–3503. (PMID: 10.4049/jimmunol.162.6.349810092806)
Cohen-Fredarow A, Tadmor A, Raz T et al (2014) Ovarian dendritic cells act as a double-edged pro-ovulatory and anti-inflammatory sword. Mol Endocrinol 28:1039–1054. https://doi.org/10.1210/me.2013-1400. (PMID: 10.1210/me.2013-1400248253985414831)
Cox E, Takov V (2024) Embryology, Ovarian Follicle Development.
Dahlbäck B (2018) Vitamin K-Dependent protein S: beyond the protein C pathway. Semin Thromb Hemost 44:176–184. https://doi.org/10.1055/s-0037-1604092. (PMID: 10.1055/s-0037-160409228905350)
Das D, Arur S (2022) Regulation of oocyte maturation: role of conserved ERK signaling. Mol Reprod Dev 89:353–374. https://doi.org/10.1002/mrd.23637. (PMID: 10.1002/mrd.2363735908193)
Di Renzo GC, Giardina I, Clerici G et al (2016) Progesterone in normal and pathological pregnancy. Horm Mol Biol Clin Investig 27:35–48. https://doi.org/10.1515/hmbci-2016-0038. (PMID: 10.1515/hmbci-2016-003827662646)
Djulbegovic M, Taylor Gonzalez DJ, Antonietti M et al (2023) Intrinsic disorder may drive the interaction of PROS1 and MERTK in uveal melanoma. Int J Biol Macromol 250:126027. https://doi.org/10.1016/j.ijbiomac.2023.126027. (PMID: 10.1016/j.ijbiomac.2023.1260273750679611182630)
Duffy DM, Ko C, Jo M et al (2019) Ovulation: parallels with inflammatory processes. Endocr Rev 40:369–416. https://doi.org/10.1210/er.2018-00075. (PMID: 10.1210/er.2018-0007530496379)
Eken C, Martin PJ, Sadallah S et al (2010) Ectosomes released by polymorphonuclear neutrophils induce a MerTK-dependent anti-inflammatory pathway in macrophages. J Biol Chem 285:39914–39921. https://doi.org/10.1074/jbc.M110.126748. (PMID: 10.1074/jbc.M110.126748209594433000973)
Fan X, Bialecka M, Moustakas I et al (2019) Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat Commun 10:3164. https://doi.org/10.1038/s41467-019-11036-9. (PMID: 10.1038/s41467-019-11036-9313206526639403)
Fukumatsu Y, Katabuchi H, Naito M et al (1992) Effect of macrophages on proliferation of granulosa cells in the ovary in rats. J Reprod Fertil 96:241–249. https://doi.org/10.1530/jrf.0.0960241. (PMID: 10.1530/jrf.0.09602411432955)
Gadsby JE, Frandsen S, Chang J et al (2020) Progesterone inhibits cytokine/TNF-α production by porcine CL macrophages via the genomic progesterone receptor. Domest Anim Endocrinol 72:106426. https://doi.org/10.1016/j.domaniend.2019.106426. (PMID: 10.1016/j.domaniend.2019.10642632244110)
Gaytan F, Morales C, Bellido C et al (1997) Role of prolactin in the regulation of macrophages and in the proliferative activity of vascular cells in newly formed and regressing rat corpora lutea. Biol Reprod 57:478–486. https://doi.org/10.1095/biolreprod57.2.478. (PMID: 10.1095/biolreprod57.2.4789241066)
Giroud P, Renaudineau S, Gudefin L et al (2020) Expression of TAM-R in Human Immune Cells and Unique Regulatory Function of MerTK in IL-10 Production by Tolerogenic DC. Frontiers in immunology 11: 564133. https://doi.org/10.3389/fimmu.2020.564133.
Hamm G, Maglennon G, Williamson B et al (2022) Pharmacological inhibition of MERTK induces in vivo retinal degeneration: a multimodal imaging ocular safety assessment. Arch Toxicol 96:613–624. https://doi.org/10.1007/s00204-021-03197-8. (PMID: 10.1007/s00204-021-03197-8349731108837544)
Harris BS, Steiner AZ, Faurot KR et al (2023) Systemic inflammation and menstrual cycle length in a prospective cohort study. Am J Obstet Gynecol 228. https://doi.org/10.1016/j.ajog.2022.10.008 . 215.e1-215.e17.
Hatzirodos N, Hummitzsch K, Irving-Rodgers HF et al (2014) Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia. BMC Genomics 15:40. https://doi.org/10.1186/1471-2164-15-40. (PMID: 10.1186/1471-2164-15-40244385293898078)
Kato S, Shiratsuchi A, Nagaosa K, Nakanishi Y (2005) Phosphatidylserine- and integrin-mediated phagocytosis of apoptotic luteal cells by macrophages of the rat. Dev Growth Differ 47:153–161. https://doi.org/10.1111/j.1440-169X.2005.00791.x. (PMID: 10.1111/j.1440-169X.2005.00791.x15840000)
Kaufmann SHE (2019) Immunology’s coming of Age. Front Immunol 10:684. https://doi.org/10.3389/fimmu.2019.00684. (PMID: 10.3389/fimmu.2019.00684310012786456699)
Kyra JE, Borgman GF-GMARCMMLACDB-RFCMariaFG-P (2020) Membrane receptor MerTK is a newly identified transcriptional regulator that associates to chromatin as nanoclusters during human DC differentiation.
Lemke G (2013) Biology of the TAM receptors. Cold Spring Harb Perspect Biol 5:a009076. https://doi.org/10.1101/cshperspect.a009076. (PMID: 10.1101/cshperspect.a009076241860673809585)
Lemke G (2019) How macrophages deal with death. Nat Rev Immunol 19:539–549. https://doi.org/10.1038/s41577-019-0167-y. (PMID: 10.1038/s41577-019-0167-y310192846733267)
Liu Y, Lan L, Li Y et al (2022) N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biol 54:102366. https://doi.org/10.1016/j.redox.2022.102366. (PMID: 10.1016/j.redox.2022.102366357283039214875)
Lobel BL, Rosenbaum RM, Deane HW (1961) Enzymic correlates of physiological regression of follicles and corpora lutea in ovaries of normal rats. Endocrinology 68:232–247. https://doi.org/10.1210/endo-68-2-232. (PMID: 10.1210/endo-68-2-23213762946)
Lu Q, Gore M, Zhang Q et al (1999) Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398:723–728. https://doi.org/10.1038/19554. (PMID: 10.1038/1955410227296)
McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214. https://doi.org/10.1210/edrv.21.2.0394. (PMID: 10.1210/edrv.21.2.039410782364)
Migdall-Wilson J, Bates C, Schlegel J et al (2012) Prolonged exposure to a mer ligand in leukemia: Gas6 favors expression of a partial mer glycoform and reveals a novel role for mer in the nucleus. PLoS ONE 7:e31635. https://doi.org/10.1371/journal.pone.0031635. (PMID: 10.1371/journal.pone.0031635223636953282750)
Panja S, Paria BC (2021) Development of the Mouse Placenta. Adv Anat Embryol Cell Biol 234:205–221. https://doi.org/10.1007/978-3-030-77360-1_10. (PMID: 10.1007/978-3-030-77360-1_10346944839109784)
Pelé T, Giraud S, Joffrion S et al (2021) Study of the role of the tyrosine kinase receptor MerTK in the development of kidney ischemia-reperfusion Injury in RCS rats. Int J Mol Sci 22. https://doi.org/10.3390/ijms222212103.
Rovati L, Kaneko N, Pedica F et al (2021a) Mer tyrosine kinase as a possible link between resolution of inflammation and tissue fibrosis in IgG4-related disease. Rheumatology (Oxford) 60:4929–4941. https://doi.org/10.1093/rheumatology/keab096. (PMID: 10.1093/rheumatology/keab09633512463)
Rovati L, Kaneko N, Pedica F et al (2021b) Mer tyrosine kinase as a possible link between resolution of inflammation and tissue fibrosis in IgG4-related disease. Rheumatology 60:4929–4941. https://doi.org/10.1093/rheumatology/keab096. (PMID: 10.1093/rheumatology/keab096335124638487308)
Scott RS, McMahon EJ, Pop SM et al (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–211. https://doi.org/10.1038/35075603. (PMID: 10.1038/3507560311346799)
Senturk LM, Seli E, Gutierrez LS et al (1999) Monocyte chemotactic protein-1 expression in human corpus luteum. Mol Hum Reprod 5:697–702. https://doi.org/10.1093/molehr/5.8.697. (PMID: 10.1093/molehr/5.8.69710421794)
Sirard M-A (2022) The two-step process of ovarian follicular growth and maturation in mammals can be compared to a fruit ripening where quality depends on the second step. Biol Reprod 106:230–234. https://doi.org/10.1093/biolre/ioab236. (PMID: 10.1093/biolre/ioab23634939644)
Somfai T, Nguyen HT, Nguyen MT et al (2020) Vitrification of porcine cumulus-oocyte complexes at the germinal vesicle stage does not trigger apoptosis in oocytes and early embryos, but activates anti-apoptotic Bcl-XL gene expression beyond the 4-cell stage. J Reprod Dev 66:115–123. https://doi.org/10.1262/jrd.2019-094. (PMID: 10.1262/jrd.2019-094319837187175390)
Sprague R, Kim JW, Kirimlioglu E et al (2021) Catecholestradiol activation of adrenergic receptors induces endometrial cell survival via p38 MAPK signaling. J Clin Endocrinol Metab 106:337–350. https://doi.org/10.1210/clinem/dgaa866. (PMID: 10.1210/clinem/dgaa86633247592)
Thordarson G, Galosy S, Gudmundsson GO et al (1997) Interaction of mouse placental lactogens and androgens in regulating progesterone release in cultured mouse luteal cells. Endocrinology 138:3236–3241. https://doi.org/10.1210/endo.138.8.5309. (PMID: 10.1210/endo.138.8.53099231773)
Tutusaus A, Marí M, Ortiz-Pérez JT et al (2020) Role of vitamin K-Dependent factors protein S and GAS6 and TAM receptors in SARS-CoV-2 infection and COVID-19-Associated Immunothrombosis. Cells 9. https://doi.org/10.3390/cells9102186.
Wiesak T, Hunter MG, Foxcroft GR (1992) Ovarian follicular development during early pregnancy in the pig. Anim Reprod Sci 29:17–24. https://doi.org/10.1016/0378-4320(92)90016-7. (PMID: 10.1016/0378-4320(92)90016-7)
Wu R, Van der Hoek KH, Ryan NK et al (2004) Macrophage contributions to ovarian function. Hum Reprod Update 10:119–133. https://doi.org/10.1093/humupd/dmh011. (PMID: 10.1093/humupd/dmh01115073142)
Wu H, Zheng J, Xu S et al (2021) Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury. J Neuroinflammation 18:2. https://doi.org/10.1186/s12974-020-02041-7. (PMID: 10.1186/s12974-020-02041-7334021817787000)
Yang X, Gilman-Sachs A, Kwak-Kim J (2019) Ovarian and endometrial immunity during the ovarian cycle. J Reprod Immunol 133:7–14. https://doi.org/10.1016/j.jri.2019.04.001. (PMID: 10.1016/j.jri.2019.04.00131055226)
Yefimova MG, Lefevre C, Bashamboo A et al (2020) Granulosa cells provide elimination of apoptotic oocytes through unconventional autophagy-assisted phagocytosis. Hum Reprod 35:1346–1362. https://doi.org/10.1093/humrep/deaa097. (PMID: 10.1093/humrep/deaa09732531067)
Yefimova MG, Ravel C, Rolland AD et al (2021) MERTK-Mediated LC3-Associated phagocytosis (LAP) of apoptotic substrates in blood-separated tissues: Retina, Testis, ovarian follicles. https://doi.org/10.3390/cells10061443 . Cells 10.
Zagórska A, Través PG, Lew ED et al (2014) Diversification of TAM receptor tyrosine kinase function. Nat Immunol 15:920–928. https://doi.org/10.1038/ni.2986. (PMID: 10.1038/ni.2986251944214169336) - Grant Information: 220S425 Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
- Contributed Indexing: Keywords: Corpus luteum; Macrophage; MerTK; Ovary; Pros1
- Accession Number: EC 2.7.10.1 (c-Mer Tyrosine Kinase)
EC 2.7.10.1 (Mertk protein, mouse)
0 (Protein S)
0 (Ligands)
0 (RNA, Messenger) - Publication Date: Date Created: 20241129 Date Completed: 20241129 Latest Revision: 20241129
- Publication Date: 20241202
- Accession Number: 10.1007/s10735-024-10292-4
- Accession Number: 39612024
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.