Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Study on the molecular mechanisms of rifaximin in the treatment of non‑alcoholic steatohepatitis based on the Helicobacter ‑DCA‑Fxr‑Hnf1α signalling pathway.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: D. A. Spandidos Country of Publication: Greece NLM ID: 101475259 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1791-3004 (Electronic) Linking ISSN: 17912997 NLM ISO Abbreviation: Mol Med Rep Subsets: MEDLINE
- Publication Information:
Original Publication: Athens, Greece : D. A. Spandidos
- Subject Terms:
- Abstract:
Non‑alcoholic steatohepatitis (NASH), the more progressive form of non‑alcoholic fatty liver disease, has become a major cause of cirrhosis and liver cancer. The aim of the present study was to investigate the anti‑NASH effect of the nonabsorbable antibiotic rifaximin and its specific molecular mechanisms. A methionine‑choline deficient (MCD) diet was used to induce NASH formation in mice. The mice with NASH were treated with rifaximin to observe its effects on liver fat deposition, hepatocyte inflammation and liver fibrosis. Furthermore, the intestinal microbiota of mice with NASH was analysed by 16S rRNA sequencing and terminal ileal bile acid levels were assessed using liquid chromatography‑electrospray ionization‑tandem mass spectrometry analysis. Furthermore, the correlation between the intestinal microflora and bile acid levels in the terminal ileum was investigated, and the effects of rifaximin on the intestinal Helicobacter ‑deoxycholic acid (DCA)‑farnesoid X receptor (Fxr)‑hepatocyte nuclear factor 1α (Hnf1α) signalling pathway were examined. Moreover, analyses of mice after intestinal decontamination with broad‑spectrum antibiotics and of hepatocyte‑specific Hnf1α knockout (Hnf1α H‑KO ) mice were used to elucidate the molecular mechanisms by which rifaximin improves NASH. Notably, treatment with rifaximin markedly ameliorated liver steatosis, hepatocyte inflammation and liver fibrosis in mice with MCD diet‑induced NASH. Rifaximin modulated the gut microbiota, especially Helicobacter hepaticus , in mice with NASH. In addition, rifaximin inhibited the intestinal Helicobacter‑DCA‑Fxr‑Hnf1α signalling pathway in mice with NASH. By contrast, rifaximin did not exert an anti‑NASH effect on decontamination‑treated mice or Hnf1α H‑KO mice. Taken together, these results indicated that rifaximin can ameliorate NASH in mice by modulating the Helicobacter ‑DCA‑Fxr‑Hnf1α signalling pathway, providing a theoretical basis for the clinical treatment of patients with NASH with rifaximin.
- References:
Nat Rev Gastroenterol Hepatol. 2018 Jun;15(6):349-364. (PMID: 29740166)
FEMS Microbiol Rev. 2005 Sep;29(4):625-51. (PMID: 16102595)
Oxid Med Cell Longev. 2022 May 10;2022:3474723. (PMID: 35592528)
J Cell Mol Med. 2019 May;23(5):3724-3736. (PMID: 30912275)
Biomed Pharmacother. 2019 Feb;110:571-581. (PMID: 30537674)
Front Cell Infect Microbiol. 2019 Mar 04;9:44. (PMID: 30886835)
Clin Gastroenterol Hepatol. 2019 Jan;17(2):296-306. (PMID: 30196156)
Biosci Microbiota Food Health. 2019;38(3):81-88. (PMID: 31384519)
Toxicol Appl Pharmacol. 2009 Feb 1;234(3):281-92. (PMID: 19010343)
Am J Transl Res. 2019 Mar 15;11(3):1531-1540. (PMID: 30972180)
Curr Opin Gastroenterol. 2012 Mar;28(2):159-65. (PMID: 22134222)
Acta Pharm Sin B. 2019 Jul;9(4):702-710. (PMID: 31384531)
Rev Gastroenterol Mex (Engl Ed). 2020 Jan - Mar;85(1):56-68. (PMID: 31836274)
Eur J Gastroenterol Hepatol. 2015 Jul;27(7):840-5. (PMID: 26043290)
Clin Gastroenterol Hepatol. 2019 Dec;17(13):2687-2695.e11. (PMID: 30831219)
Eur J Gastroenterol Hepatol. 2018 Oct;30(10):1237-1246. (PMID: 30096092)
Mol Cell Biol. 2012 Apr;32(7):1226-36. (PMID: 22290433)
Gastroenterology. 2017 May;152(7):1679-1694.e3. (PMID: 28214524)
Hepatology. 2005 Jun;41(6):1313-21. (PMID: 15915461)
Alcohol Clin Exp Res. 2016 Feb;40(2):335-47. (PMID: 26842252)
Hepatology. 2019 Jun;69(6):2672-2682. (PMID: 30179269)
J Hepatol. 2014 Apr;60(4):847-54. (PMID: 24333182)
Metabolism. 2017 Apr;69:177-187. (PMID: 28285648)
Phytomedicine. 2021 Nov;92:153739. (PMID: 34592488)
Adv Drug Deliv Rev. 2021 Sep;176:113869. (PMID: 34280515)
World J Hepatol. 2020 Jan 27;12(1):10-20. (PMID: 31984117)
Gut. 2010 Feb;59(2):236-46. (PMID: 19671543)
Gut. 2021 Apr;70(4):761-774. (PMID: 32694178)
Clin Liver Dis. 2018 Feb;22(1):133-140. (PMID: 29128053)
Nutrients. 2019 Jun 15;11(6):. (PMID: 31208043)
J Gastroenterol. 2019 Apr;54(4):347-358. (PMID: 30519748)
Methods. 2001 Dec;25(4):402-8. (PMID: 11846609)
Best Pract Res Clin Obstet Gynaecol. 2016 Nov;37:140-151. (PMID: 26972165)
Hepatology. 2019 Jan;69(1):107-120. (PMID: 29665135)
Cell Metab. 2013 May 7;17(5):657-69. (PMID: 23602448)
Gut Microbes. 2019;10(1):22-33. (PMID: 29708822)
Hepatology. 2013 Feb;57(2):601-9. (PMID: 23055155)
Gut Microbes. 2021 Jan-Dec;13(1):1972746. (PMID: 34530693)
Nat Med. 2018 Jul;24(7):908-922. (PMID: 29967350)
PLoS One. 2014 Sep 03;9(9):e106764. (PMID: 25184625)
Front Endocrinol (Lausanne). 2019 Sep 06;10:611. (PMID: 31555219)
FEBS Lett. 2017 Jul;591(13):1947-1957. (PMID: 28547778)
Nat Rev Endocrinol. 2019 May;15(5):261-273. (PMID: 30670819)
- Contributed Indexing:
Keywords: deoxycholic acid; farnesoid X receptor; hepatocyte nuclear factor 1α; intestinal microbiota; non‑alcoholic steatohepatitis; rifaximin
- Accession Number:
L36O5T016N (Rifaximin)
0 (Hepatocyte Nuclear Factor 1-alpha)
0C5V0MRU6P (farnesoid X-activated receptor)
0 (Bile Acids and Salts)
0 (Hnf1a protein, mouse)
0 (Receptors, Cytoplasmic and Nuclear)
- Publication Date:
Date Created: 20241129 Date Completed: 20241129 Latest Revision: 20241213
- Publication Date:
20241213
- Accession Number:
PMC11632295
- Accession Number:
10.3892/mmr.2024.13407
- Accession Number:
39611479
No Comments.