In-situ oxidative polymerization of dopamine triggered by CuO 2 in acidic condition and application in "turn-off" sensing.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: MEDLINE
    • Publication Information:
      Original Publication: Wien ; New York : Springer-Verlag.
    • Subject Terms:
    • Abstract:
      Dopamine (DA) is a key neurotransmitter whose concentration affects various neurological disorders. Unlike previous methods that synthesize non-fluorescent polydopamine (NFL-PDA) under alkaline conditions, this study introduces a novel "turn-off" sensing method for DA using NFL-PDA synthesized through a unique reaction pathway. In our approach, CuO 2 nanodots, created via a simple reduction method, catalyze the formation of hydroxyl radicals (•OH) in acidic conditions, triggering the oxidative polymerization of DA into NFL-PDA. The reaction between DA and CuO 2 nanodots in acidic solution was examined to understand the process. UiO-66-NH 2 was then used to test NFL-PDA's fluorescence quenching ability and to further investigate the DA determination mechanism. Results showed that fluorescence quenching was due to enhanced non-radiative energy transfer and Förster resonance energy transfer (FRET) between NFL-PDA and UiO-66-NH 2 . This led to the development of a simple "turn-off" fluorometric DA determination method with a linear range of 0.1-200 μmol/L and a limit of detection (LOD) of 0.0575 μmol/L. Although this method does not outperform existing NFL-PDA synthesis methods under alkaline conditions, it provides a new synthesis approach and application for sensing DA, contributing to the basic theory of chemical sensing. Additionally, DA determination in human serum samples was successfully achieved, with results consistent with high-performance liquid chromatography (HPLC).
      Competing Interests: Declarations. Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
    • References:
      Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601. https://doi.org/10.1002/mds.26424 . Review. (PMID: 10.1002/mds.2642426474316)
      Scopus Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3. (PMID: 10.1016/S0140-6736(14)61393-3)
      Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet 388(10039):86–97. https://doi.org/10.1016/S0140-6736(15)01121-6. (PMID: 10.1016/S0140-6736(15)01121-6267779174940219)
      Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PRA (2015) The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 16(5):305–312. https://doi.org/10.1038/nrn3939 . Review. (PMID: 10.1038/nrn393925873042)
      Hou X, Huang W, Tong Y, Tian M (2019) Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC. Microchim Acta 186(11):686. https://doi.org/10.1007/s00604-019-3801-2. (PMID: 10.1007/s00604-019-3801-2)
      Huang Q, Lin X, Tong L, Tong QX (2020) Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. ACS Sustain Chem Eng 8(3):1644–1650. https://doi.org/10.1021/acssuschemeng.9b06623 . Article. (PMID: 10.1021/acssuschemeng.9b06623)
      Wang J, Hu Y, Zhou Q, Hu L, Fu W, Wang Y (2019) Peroxidase-like activity of metal-organic framework [Cu(PDA)(DMF)] and its application for colorimetric detection of dopamine. ACS Appl Mater Interfaces 11(47):44466–44473. https://doi.org/10.1021/acsami.9b17488 . Article. (PMID: 10.1021/acsami.9b1748831691561)
      Lan Y, Yuan F, Fereja TH, Wang C, Lou B, Li J, Xu G (2019) Chemiluminescence of lucigenin/riboflavin and its application for selective and sensitive dopamine detection. Anal Chem 91(3):2135–2139. https://doi.org/10.1021/acs.analchem.8b04670 . Article. (PMID: 10.1021/acs.analchem.8b0467030582677)
      Ma Z, Xu Y, Li P, Cheng D, Zhu X, Liu M, Zhang Y, Liu Y, Yao S (2021) Self-catalyzed surface reaction-induced fluorescence resonance energy transfer on cysteine-stabilized MnO2 quantum dots for selective detection of dopamine. Anal Chem 93(7):3586–3593. https://doi.org/10.1021/acs.analchem.0c05102 . Article. (PMID: 10.1021/acs.analchem.0c0510233543940)
      Tang Z, Jiang K, Sun S, Qian S, Wang Y, Lin H (2019) A conjugated carbon-dot-tyrosinase bioprobe for highly selective and sensitive detection of dopamine. Analyst 144(2):468–473. https://doi.org/10.1039/c8an01659c . Article. (PMID: 10.1039/c8an01659c30411752)
      Chen J, Li Y, Huang Y, Zhang H, Chen X, Qiu H (2019) Fluorometric dopamine assay based on an energy transfer system composed of aptamer-functionalized MoS2 quantum dots and MoS2 nanosheets. Microchim Acta 186(2), Article. https://doi.org/10.1007/s00604-018-3143-5.
      Li H, Yang M, Liu J, Zhang Y, Yang Y, Huang H, Liu Y, Kang Z (2015) A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine. Nanoscale 7(28):12068–12075. https://doi.org/10.1039/c5nr03316k . Article. (PMID: 10.1039/c5nr03316k26118497)
      Munyemana JC, Chen J, Tang H, Han Y, Wang J, Qiu H (2021) Discriminative detection of dopamine and tyrosinase based on polydopamine dots triggered by Fenton-like activity of Mn3O4 nanoparticles. ACS Appl Nano Mater 4(3):2820–2827. https://doi.org/10.1021/acsanm.0c03448 . Article. (PMID: 10.1021/acsanm.0c03448)
      Zhang X, Wang S, Xu L, Feng L, Ji Y, Tao L, Li S, Wei Y (2012) Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale 4(18):5581–5584. https://doi.org/10.1039/c2nr31281f . Article. (PMID: 10.1039/c2nr31281f22864922)
      Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430. https://doi.org/10.1126/science.1147241 . Article. (PMID: 10.1126/science.1147241179475762601629)
      Yildirim A, Bayindir M (2014) Turn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles. Anal Chem 86(11):5508–5512. https://doi.org/10.1021/ac500771q . Article. (PMID: 10.1021/ac500771q24803112)
      Li Q, Zhang T, Chen J, Ji W, Wei Y (2021) In situ synthesis of fluorescent polydopamine polymer dots based on Fenton reaction for a multi-sensing platform. J Mater Chem B 9(27):5503–5513. https://doi.org/10.1039/d1tb00764e . Article. (PMID: 10.1039/d1tb00764e34132319)
      Wei X, Zhang Z, Wang Z (2019) A simple dopamine detection method based on fluorescence analysis and dopamine polymerization. Microchem J 145:55–58. https://doi.org/10.1016/j.microc.2018.10.004 . Article. (PMID: 10.1016/j.microc.2018.10.004)
      Liu M, Ji J, Zhang X, Zhang X, Yang B, Deng F, Li Z, Wang K, Yang Y, Wei Y (2015) Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J Mater Chem B 3(17):3476–3482. https://doi.org/10.1039/c4tb02067g . Article. (PMID: 10.1039/c4tb02067g32262230)
      Pang Y, Shi Y, Pan Y, Yang Y, Long Y, Zheng H (2018) Facile and sensitive detection of dopamine based on in situ formation of fluorescent polydopamine nanoparticles catalyzed by peroxidase-like ficin. Sensors and Actuators B: Chem 263:177–182. https://doi.org/10.1016/j.snb.2018.02.128 . Article. (PMID: 10.1016/j.snb.2018.02.128)
      Han Y, Ouyang J, Li Y, Wang F, Jiang J-H (2020) Engineering H2O2 self-supplying nanotheranostic platform for targeted and imaging-guided chemodynamic therapy. ACS Appl Mater Interfaces 12(1):288–297. https://doi.org/10.1021/acsami.9b18676. (PMID: 10.1021/acsami.9b1867631834761)
      Lin LS, Huang T, Song J, Ou XY, Wang Z, Deng H, Tian R, Liu Y, Wang JF, Liu Y et al (2019) Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J Am Chem Soc. https://doi.org/10.1021/jacs.9b03457 . Article. (PMID: 10.1021/jacs.9b03457318753887106946)
      Liu B, Bian Y, Liang S, Yuan M, Dong S, He F, Gai S, Yang P, Cheng Z, Lin J (2022) One-step integration of tumor microenvironment-responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion-interference therapy. ACS Nano 16(1):617–630. https://doi.org/10.1021/acsnano.1c07893. (PMID: 10.1021/acsnano.1c0789334957819)
      Wu FN, Zhu J, Weng GJ, Li JJ, Zhao JW (2021) Tyrosine-decorated gold nanoclusters chelated cerium(III) for fluorescence detection of dopamine. ACS Appl Nano Mater 4(12):13501–13509. https://doi.org/10.1021/acsanm.1c02982 . Article. (PMID: 10.1021/acsanm.1c02982)
      Wu KY, Chen M, Huang NH, Li RT, Pan WL, Zhang WH, Chen WH, Chen JX (2021) Facile and recyclable dopamine sensing by a label-free terbium(III) metal−organic framework. Talanta 221, Article. https://doi.org/10.1016/j.talanta.2020.121399.
      Yang S, Wang CF, Chen S (2011) Interface-directed assembly of one-dimensional ordered architecture from quantum dots guest and polymer host. J Am Chem Soc 133(22):8412–8415. https://doi.org/10.1021/ja201194d . Article. (PMID: 10.1021/ja201194d21563796)
      Liu Y, Duan W, Song W, Liu J, Ren C, Wu J, Liu D, Chen H (2017) Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells. ACS Appl Mater Interfaces 9(14):12663–12672. https://doi.org/10.1021/acsami.6b15746 . Article. (PMID: 10.1021/acsami.6b1574628339185)
      Tan A, Yang G, Wan X (2021) Ultra-high quantum yield nitrogen-doped carbon quantum dots and their versatile application in fluorescence sensing, bioimaging and anti-counterfeiting. Spectrochim Acta – A: Mol Biomol Spectrosc 253, Article https://doi.org/10.1016/j.saa.2021.119583 .
      Yao X, Shen J, Liu Q, Fa H, Yang M, Hou C (2020) A novel electrochemical aptasensor for the sensitive detection of kanamycin based on UiO-66-NH2/MCA/MWCNT@rGONR nanocomposites. Anal Methods 12(41):4967–4976. https://doi.org/10.1039/d0ay01503b . Article. (PMID: 10.1039/d0ay01503b33006333)
      Jia P, Yang K, Hou J, Cao Y, Wang X, Wang L (2021) Ingenious dual-emitting Ru@UiO-66-NH2 composite as ratiometric fluorescence sensor for detection of mercury in aqueous. J Hazard Mater 408, Article. https://doi.org/10.1016/j.jhazmat.2020.124469.
      Tang Z, Zhao P, Wang H, Liu Y, Bu W (2021) Biomedicine meets Fenton chemistry. Chem Rev 121(4):1981–2019. https://doi.org/10.1021/acs.chemrev.0c00977 . Review. (PMID: 10.1021/acs.chemrev.0c0097733492935)
      Gu GE, Park CS, Cho HJ, Ha TH, Bae J, Kwon OS, Lee JS, Lee CS (2018) Fluorescent polydopamine nanoparticles as a probe for zebrafish sensory hair cells targeted in vivo imaging. Sci Rep 8(1), Article. https://doi.org/10.1038/s41598-018-22828-2.
      Lin JH, Yu CJ, Yang YC, Tseng WL (2015) Formation of fluorescent polydopamine dots from hydroxyl radical-induced degradation of polydopamine nanoparticles. Phys Chem Chem Phys 17(23):15124–15130. https://doi.org/10.1039/c5cp00932d . Article. (PMID: 10.1039/c5cp00932d25820836)
      Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chemical Society Reviews 40(11):5361–5388. https://doi.org/10.1039/c1cs15113d . Article. (PMID: 10.1039/c1cs15113d21799992)
      Yu X, Fan H, Liu Y, Shi Z, Jin Z (2014) Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine. Langmuir 30(19):5497–5505. https://doi.org/10.1021/la500225v . Article. (PMID: 10.1021/la500225v24773501)
      Tran ML, Powell BJ, Meredith P (2006) Chemical and structural disorder in eumelanins: a possible explanation for broadband absorbance. Biophys J 90(3):743–752. https://doi.org/10.1529/biophysj.105.069096 . Article. (PMID: 10.1529/biophysj.105.06909616284264)
      Della Vecchia NF, Avolio R, Alfè M, Errico ME, Napolitano A, D’Ischia M (2013) Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Adv Funct Mater 23(10):1331–1340. https://doi.org/10.1002/adfm.201202127 . Article. (PMID: 10.1002/adfm.201202127)
      Yang H, Liu Y, Guo Z, Lei B, Zhuang J, Zhang X, Liu Z, Hu C (2019) Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat Commun 10(1), Article. https://doi.org/10.1038/s41467-019-09830-6.
      Zu Y, Wang Y, Yao H, Yan L, Yin W, Gu Z (2022) A copper peroxide fenton nanoagent-hydrogel as an in situ pH-responsive wound dressing for effectively trapping and eliminating bacteria. ACS Appl Bio Mater. https://doi.org/10.1021/acsabm.2c00138 . Article. (PMID: 10.1021/acsabm.2c0013835319859)
      Li M, Lan X, Han X, Shi S, Sun H, Kang Y, Dan J, Sun J, Zhang W, Wang J (2021) Acid-induced self-catalyzing platform based on dextran-coated copper peroxide nanoaggregates for biofilm treatment. ACS Appl Mater Interfaces 13(25):29269–29280. https://doi.org/10.1021/acsami.1c03409 . Article. (PMID: 10.1021/acsami.1c0340934143595)
      Cui H, Liu M, Yu W, Cao Y, Zhou H, Yin J, Liu H, Que S, Wang J, Huang C et al (2021) Copper peroxide-loaded gelatin sponges for wound dressings with antimicrobial and accelerating healing properties. ACS Appl Mater Interfaces 13(23):26800–26807. https://doi.org/10.1021/acsami.1c07409 . Article. (PMID: 10.1021/acsami.1c0740934096255)
      Zhang Y, Li B, Chen X (2010) Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes. Microchim Acta 168(1–2):107–113. https://doi.org/10.1007/s00604-009-0269-5 . Article. (PMID: 10.1007/s00604-009-0269-5)
      Su H, Sun B, Chen L, Xu Z, Ai S (2012) Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions. Anal Methods 4(12):3981–3986. https://doi.org/10.1039/c2ay25794g . Article. (PMID: 10.1039/c2ay25794g)
      Chen Y, Chen L, Wu Y, Di J (2019) Highly sensitive determination of dopamine based on the aggregation of small-sized gold nanoparticles. Microchem J 147:955–961. https://doi.org/10.1016/j.microc.2019.04.025 . Article. (PMID: 10.1016/j.microc.2019.04.025)
      Zhang R, Zhao D, Ding HG, Huang YX, Zhong HZ, Xie HY (2014) Sensitive single-color fluorescence “off-on” switch system for dsDNA detection based on quantum dots-ruthenium assembling dyads. Biosens Bioelectron 56:51–57. https://doi.org/10.1016/j.bios.2013.12.059 . Article. (PMID: 10.1016/j.bios.2013.12.05924463196)
      Zhai W, Wang C, Yu P, Wang Y, Mao L (2014) Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86(24):12206–12213. https://doi.org/10.1021/ac503215z . Article. (PMID: 10.1021/ac503215z25393423)
      Ji C, Zhou Y, Leblanc RM, Peng Z (2020) Recent developments of carbon dots in biosensing: a review. ACS Sensors 5(9):2724–2741. https://doi.org/10.1021/acssensors.0c01556 . Article. (PMID: 10.1021/acssensors.0c0155632812427)
    • Grant Information:
      2022YFC2106200 National Key Research and Development Program of China; 2022YFC2106200 National Key Research and Development Program of China; 81271930 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: CuO2; Dopamine; NFL-PDA; Turn-off fluorescence; UiO-66-NH2
    • Accession Number:
      789U1901C5 (Copper)
      VTD58H1Z2X (Dopamine)
      V1XJQ704R4 (cupric oxide)
      0 (Indoles)
      0 (Polymers)
      0 (polydopamine)
      3352-57-6 (Hydroxyl Radical)
    • Publication Date:
      Date Created: 20241125 Date Completed: 20241125 Latest Revision: 20241219
    • Publication Date:
      20241219
    • Accession Number:
      10.1007/s00604-024-06791-6
    • Accession Number:
      39586875