Research progress on the function and regulatory pathways of amino acid permeases in fungi.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Yang Y;Yang Y; Li Y; Li Y; Zhu J; Zhu J
  • Source:
    World journal of microbiology & biotechnology [World J Microbiol Biotechnol] 2024 Nov 25; Vol. 40 (12), pp. 392. Date of Electronic Publication: 2024 Nov 25.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
    • Publication Information:
      Publication: 2005- : Berlin : Springer
      Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
    • Subject Terms:
    • Abstract:
      Nitrogen sources are pivotal for the formation of fungal mycelia and the biosynthesis of metabolites, playing a crucial role in the growth and development of fungi. Amino acids are integral to protein construction, constitute an essential nitrogen source for fungi. Fungi actively uptake amino acids from their surroundings, a process that necessitates the involvement of amino acid permeases (AAPs) located on the plasma membrane. By sensing the intracellular demand for amino acids and their extracellular availability, fungi activate or suppress relevant pathways to precisely regulate the genes encoding these transporters. This review aims to illustrate the function of fungal AAPs on uptake of amino acids and the effect of AAPs on fungal growth, development and virulence. Additionally, the complex mechanisms to regulate expression of aaps are elucidated in mainly Saccharomyces cerevisiae, including the Ssy1-Ptr3-Ssy5 (SPS) pathway, the Nitrogen Catabolite Repression (NCR) pathway, and the General Amino Acid Control (GAAC) pathway. However, the physiological roles of AAPs and their regulatory mechanisms in other species, particularly pathogenic fungi, merit further exploration. Gaining insights into these aspects could reveal how AAPs facilitate fungal adaptation and survival under diverse stress conditions, shedding light on their potential impact on fungal biology and pathogenicity.
      Competing Interests: Declarations. Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Abastado JP, Miller PF, Jackson BM, Hinnebusch AG (1991) Suppression of ribosomal reinitiation at upstream open reading frames in amino acid-starved cells forms the basis for GCN4 translational control. Mol Cell Biol 11(1):486–496. https://doi.org/10.1128/mcb.11.1.486-496.1991. (PMID: 10.1128/mcb.11.1.486-496.19911986242359655)
      Abdel-Sater F, Iraqui I, Urrestarazu A, André B (2004) The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae. Genetics 166(4):1727–1739. https://doi.org/10.1534/genetics.166.4.1727. (PMID: 10.1534/genetics.166.4.1727151263931470804)
      Adeva MM, Souto G, Blanco N, Donapetry C (2012) Ammonium metabolism in humans. Metabolism 61(11):1495–1511. https://doi.org/10.1016/j.metabol.2012.07.007. (PMID: 10.1016/j.metabol.2012.07.00722921946)
      Andréasson C, Neve EPA, Ljungdahl PO (2004) Four permeases import proline and the toxic proline analogue azetidine-2‐carboxylate into yeast. Yeast 21(3):193–199. https://doi.org/10.1002/yea.1052. (PMID: 10.1002/yea.105214968425)
      Bianchi F, Van’t Klooster JS, Ruiz SJ, Poolman B (2019) Regulation of amino acid transport in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 83(4). https://doi.org/10.1128/mmbr.00024-19.
      Boorer KJ, Fischer WN (1997) Specificity and stoichiometry of the Arabidopsis H+/amino acid transporter AAP5. J Biol Chem 272(20):13040–13046. https://doi.org/10.1074/jbc.272.20.13040. (PMID: 10.1074/jbc.272.20.130409148914)
      Böttcher B, Hoffmann B, Garbe E, Weise T, Cseresnyés Z, Brandt P, Dietrich S, Driesch D, Figge MT, Vylkova S (2020) The transcription factor Stp2 is important for Candida albicans Biofilm Establishment and sustainability. Front Microbiol 11:794. https://doi.org/10.3389/fmicb.2020.00794. (PMID: 10.3389/fmicb.2020.00794324259157203782)
      Braus GH, Pries R, Düvel K, Valerius O (2004) Molecular Biology of fungal amino acid biosynthesis regulation. Genetics and Biotechnology. U. Kück. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 239–269.
      Brüggenthies JB, Fiore A, Russier M, Bitsina C, Brötzmann J, Kordes S, Menninger S, Wolf A, Conti E, Eickhoff JE, Murray PJ (2022) A cell-based chemical-genetic screen for amino acid stress response inhibitors reveals torins reverse stress kinase GCN2 signaling. J Biol Chem 298(12):102629. https://doi.org/10.1016/j.jbc.2022.102629. (PMID: 10.1016/j.jbc.2022.102629362735899668732)
      Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13(24):3271–3279. https://doi.org/10.1101/gad.13.24.3271. (PMID: 10.1101/gad.13.24.327110617575317202)
      Castilho BA, Shanmugam R, Silva RC, Ramesh R, Himme BM, Sattlegger E (2014) Keeping the eIF2 alpha kinase Gcn2 in check. Biochim Biophys Acta 1843(9):1948–1968. https://doi.org/10.1016/j.bbamcr.2014.04.006. (PMID: 10.1016/j.bbamcr.2014.04.00624732012)
      Coffman JA, Rai R, Cooper TG (1995) Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae. J Bacteriol 177(23):6910–6918. https://doi.org/10.1128/jb.177.23.6910-6918.1995. (PMID: 10.1128/jb.177.23.6910-6918.19957592485177560)
      Coffman JA, Rai R, Cunningham T, Svetlov V, Cooper TG (1996) Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolite repression, participates in transcriptional activation of nitrogen-catabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 16(3):847–858. https://doi.org/10.1128/mcb.16.3.847. (PMID: 10.1128/mcb.16.3.8478622686231065)
      Coffman JA, Rai R, Loprete DM, Cunningham T, Svetlov V, Cooper TG (1997) Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J Bacteriol 179(11):3416–3429. https://doi.org/10.1128/jb.179.11.3416-3429.1997. (PMID: 10.1128/jb.179.11.3416-3429.19979171383179131)
      Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38(2):254–299. https://doi.org/10.1111/1574-6976.12065. (PMID: 10.1111/1574-6976.1206524483210)
      Cui G, Huang C, Bi X, Wang Y, Yin K, Zhu L, Jiang Z, Chen B, Deng YZ (2022) Aminotransferase SsAro8 regulates Tryptophan Metabolism essential for filamentous growth of Sugarcane Smut Fungus Sporisorium Scitamineum. Microbiol Spectr 10(4):e0057022. https://doi.org/10.1128/spectrum.00570-22. (PMID: 10.1128/spectrum.00570-2235862944)
      Cunningham TS, Dorrington RA, Cooper TG (1994) The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae. J Bacteriol 176(15):4718–4725. https://doi.org/10.1128/jb.176.15.4718-4725.1994. (PMID: 10.1128/jb.176.15.4718-4725.19948045902196294)
      Dabas N, Morschhäuser J (2008) A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans. Mol Microbiol 69(3):586–602. https://doi.org/10.1111/j.1365-2958.2008.06297.x. (PMID: 10.1111/j.1365-2958.2008.06297.x18547391)
      Darvishi E, Omidi M, Bushehri AA, Golshani A, Smith ML (2013) The antifungal eugenol perturbs dual aromatic and branched-chain amino acid permeases in the cytoplasmic membrane of yeast. PLoS ONE 8(10):e76028. https://doi.org/10.1371/journal.pone.0076028. (PMID: 10.1371/journal.pone.0076028242045883799837)
      Das S, Masuda M, Sakurai A, Sakakibara M (2009) Effect of additives on cordycepin production using a Cordyceps militaris mutant induced by ion beam irradiation. Afr J Biotechnol 8. https://doi.org/10.4314/ajb.v8i13.60983.
      Davis MA, Wong KH (2010) Nitrogen Metabolism in Filamentous Fungi. In: Shin KA, Ebbole DJ (eds) Cellular and Molecular Biology of Filamentous Fungi. American Society for Microbiology;), Washington, DC, pp 325–338. https://doi.org/10.1128/9781555816636.ch23. (PMID: 10.1128/9781555816636.ch23)
      Davis MM, Alvarez FJ, Ryman K, Holm A, Ljungdahl ÅPO, Engström Y (2011) Wild-type Drosophila melanogaster as a model host to analyze nitrogen source dependent virulence of Candida albicans. PLoS ONE 6(11):e27434. https://doi.org/10.1371/journal.pone.0027434. (PMID: 10.1371/journal.pone.0027434221106513215725)
      De Boer M, Bebelman JP, Gonçalves PM, Maat J, Van Heerikhuizen H, Planta RJ (1998) Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae. Mol Microbiol 30(3):603–613. https://doi.org/10.1046/j.1365-2958.1998.01094.x. (PMID: 10.1046/j.1365-2958.1998.01094.x9822825)
      Dichtl K, Samantaray S, Wagener J (2016) Cell wall integrity signalling in human pathogenic fungi. Cell Microbiol 18(9):1228–1238. https://doi.org/10.1111/cmi.12612. (PMID: 10.1111/cmi.1261227155139)
      Donaton MC, Holsbeeks I, Lagatie O, Van Zeebroeck G, Crauwels M, Winderickx J, Thevelein JM (2003) The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase a targets in the yeast Saccharomyces cerevisiae. Mol Microbiol 50(3):911–929. https://doi.org/10.1046/j.1365-2958.2003.03732.x. (PMID: 10.1046/j.1365-2958.2003.03732.x14617151)
      Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG (2000) Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell 6(2):269–279. https://doi.org/10.1016/s1097-2765(00)00028-9. (PMID: 10.1016/s1097-2765(00)00028-910983975)
      Duncan CDS, Rodríguez-López M, Ruis P, Bähler J, Mata J (2018) General amino acid control in fission yeast is regulated by a nonconserved transcription factor, with functions analogous to Gcn4/Atf4. Proc Natl Acad Sci U S A 115(8):E1829–e1838. https://doi.org/10.1073/pnas.1713991115. (PMID: 10.1073/pnas.1713991115294321785828588)
      Fang Z, Wu B, Ji Y (2021) The amino acid transporter OsAAP4 contributes to Rice Tillering and Grain Yield by regulating neutral amino acid allocation through two splicing variants. Rice 14(1). https://doi.org/10.1186/s12284-020-00446-9.
      Fayyad-Kazan M, Feller A, Bodo E, Boeckstaens M, Marini AM, Dubois E, Georis I (2016) Yeast nitrogen catabolite repression is sustained by signals distinct from glutamine and glutamate reservoirs. Mol Microbiol 99(2):360–379. https://doi.org/10.1111/mmi.13236. (PMID: 10.1111/mmi.1323626419331)
      Fernandes JD, Martho K, Tofik V, Vallim MA, Pascon RC (2015) The role of amino acid permeases and Tryptophan Biosynthesis in Cryptococcus neoformans Survival. PLoS ONE 10(7):e0132369. https://doi.org/10.1371/journal.pone.0132369. (PMID: 10.1371/journal.pone.0132369261620774498599)
      Fischer WN, Kwart M, Hummel S, Frommer WB (1995) Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 270(27):16315–16320. https://doi.org/10.1074/jbc.270.27.16315. (PMID: 10.1074/jbc.270.27.163157608199)
      Fischer WN, Loo DD, Koch W, Ludewig U, Boorer KJ, Tegeder M, Rentsch D, Wright EM, Frommer WB (2002) Low and high affinity amino acid H + -cotransporters for cellular import of neutral and charged amino acids. Plant J 29(6):717–731. https://doi.org/10.1046/j.1365-313x.2002.01248.x. (PMID: 10.1046/j.1365-313x.2002.01248.x12148530)
      Garbe E, Miramón P, Gerwien F, Ueberschaar N, Hansske-Braun L, Brandt P, Böttcher B, Lorenz M, Vylkova S (2022) GNP2 encodes a high-specificity proline permease in Candida albicans. mBio 13(1):e0314221. https://doi.org/10.1128/mbio.03142-21. (PMID: 10.1128/mbio.03142-2135073760)
      Garcia-Barrio M, Dong J, Ufano S, Hinnebusch AG (2000) Association of GCN1-GCN20 regulatory complex with the N-terminus of eIF2alpha kinase GCN2 is required for GCN2 activation. Embo j 19(8):1887–1899. https://doi.org/10.1093/emboj/19.8.1887. (PMID: 10.1093/emboj/19.8.188710775272302013)
      Gournas C, Evangelidis T, Athanasopoulos A, Mikros E, Sophianopoulou V (2015) The aspergillus nidulans proline permease as a model for understanding the factors determining substrate binding and specificity of fungal amino acid transporters. J Biol Chem 290(10):6141–6155. https://doi.org/10.1074/jbc.M114.612069. (PMID: 10.1074/jbc.M114.612069255723934358254)
      Gournas C, Prévost M, Krammer EM, André B (2016) Function and regulation of fungal amino acid transporters: insights from predicted structure. Adv Exp Med Biol 892:69–106. https://doi.org/10.1007/978-3-319-25304-6_4. (PMID: 10.1007/978-3-319-25304-6_426721271)
      Grenson M, Hou C, Crabeel M (1970) Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol 103(3):770–777. https://doi.org/10.1128/jb.103.3.770-777.1970. (PMID: 10.1128/jb.103.3.770-777.19705474888248157)
      Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 96(26):14866–14870. https://doi.org/10.1073/pnas.96.26.14866. (PMID: 10.1073/pnas.96.26.148661061130424739)
      Heitman J, Kozel TR, Kwon-Chung KJ, Perfect JR, Casadevall A (2010) Cryptococcus: from human pathogen to model yeast. Nat Rev Microbiol 3(7):753–764.
      Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450. https://doi.org/10.1146/annurev.micro.59.031805.133833. (PMID: 10.1146/annurev.micro.59.031805.13383316153175)
      Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB (1998) Developmental control of H + /amino acid permease gene expression during seed development of Arabidopsis. Plant J 14(5):535–544. https://doi.org/10.1046/j.1365-313x.1998.00151.x. (PMID: 10.1046/j.1365-313x.1998.00151.x9675899)
      Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12(1):35–73. https://doi.org/10.1385/mb:12:1:35. (PMID: 10.1385/mb:12:1:3510554772)
      Huang C, Li L, Wang L, Bao J, Zhang X, Yan J, Wu J, Cao N, Wang J, Zhao L, Liu X, Yu X, Zhu X, Lin F (2022) The amino acid permease MoGap1 regulates TOR activity and autophagy in Magnaporthe oryzae. Int J Mol Sci 23(21). https://doi.org/10.3390/ijms232113663.
      Hueso G, Aparicio-Sanchis R, Montesinos C, Lorenz S, Murguía JoséR, Serrano R (2011) A novel role for protein kinase Gcn2 in yeast tolerance to intracellular acid stress. Biochemical Journal 441(1): 255–264. https://doi.org/10.1042/BJ20111264 %J Biochemical Journal.
      Iraqui I, Vissers S, Bernard F, de Craene JO, Boles E, Urrestarazu A, André B (1999) Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19(2):989–1001. https://doi.org/10.1128/mcb.19.2.989. (PMID: 10.1128/mcb.19.2.9899891035116030)
      Ishii R, Fukui A, Sakihama Y, Kitsukawa S, Futami A, Mochizuki T, Nagano M, Toshima J, Abe F (2022) Substrate-induced differential degradation and partitioning of the two tryptophan permeases Tat1 and Tat2 into eisosomes in Saccharomyces cerevisiae. Biochim Biophys Acta Biomembr 1864(4):183858. https://doi.org/10.1016/j.bbamem.2021.183858. (PMID: 10.1016/j.bbamem.2021.18385835031272)
      Jauniaux JC, Grenson M (2005) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Eur J Biochem 190(1):39–44. https://doi.org/10.1111/j.1432-1033.1990.tb15542.x. (PMID: 10.1111/j.1432-1033.1990.tb15542.x)
      Ji Y, Huang W, Wu B, Fang Z, Wang X (2020) The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa. J Exp Bot 71(16):4763–4777. https://doi.org/10.1093/jxb/eraa256. (PMID: 10.1093/jxb/eraa256324857367410190)
      Kilberg MS, Balasubramanian M, Fu L, Shan J (2012) The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr 3(3):295–306. https://doi.org/10.3945/an.112.001891. (PMID: 10.3945/an.112.001891225859033649461)
      Kmetzsch L, Staats CC, Simon E, Fonseca FL, Oliveira DL, Joffe LS, Rodrigues J, Lourenço RF, Gomes SL, Nimrichter L, Rodrigues ML, Schrank A, Vainstein MH (2011) The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans. Fungal Genet Biol 48(2):192–199. https://doi.org/10.1016/j.fgb.2010.07.011. (PMID: 10.1016/j.fgb.2010.07.01120673806)
      Kraidlova L, Schrevens S, Tournu H, Van Zeebroeck G, Sychrova H, Van Dijck P (2016) Characterization of the Candida albicans amino acid Permease Family: Gap2 is the only general amino acid permease and Gap4 is an S-Adenosylmethionine (SAM) transporter required for SAM-Induced morphogenesis. mSphere 1(6). https://doi.org/10.1128/mSphere.00284-16.
      Kumokita R, Yoshida T, Shirai T, Kondo A, Hasunuma T (2023) Aromatic secondary metabolite production from glycerol was enhanced by amino acid addition in Pichia pastoris. Appl Microbiol Biotechnol 107(24):7391–7401. https://doi.org/10.1007/s00253-023-12798-5. (PMID: 10.1007/s00253-023-12798-53775550810656317)
      Lee YH, Foster J, Chen J, Voll LM, Weber AP, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J 50(2):305–319. https://doi.org/10.1111/j.1365-313X.2007.03045.x. (PMID: 10.1111/j.1365-313X.2007.03045.x17419840)
      Lee IR, Lui EY, Chow EW, Arras SD, Morrow CA, Fraser JA (2013) Reactive oxygen species homeostasis and virulence of the fungal pathogen Cryptococcus neoformans requires an intact proline catabolism pathway. Genetics 194(2):421–433. https://doi.org/10.1534/genetics.113.150326. (PMID: 10.1534/genetics.113.150326235642023664852)
      Lehmann S, Gumy C, Blatter E, Boeffel S, Fricke W, Rentsch D (2011) In planta function of compatible solute transporters of the AtProT family. J Exp Bot 62(2):787–796. https://doi.org/10.1093/jxb/erq320. (PMID: 10.1093/jxb/erq32020959625)
      Lian L, Qiao J, Guo X, Xing Z, Ren A, Zhao M, Zhu J (2023) The transcription factor GCN4 contributes to maintaining intracellular amino acid contents under nitrogen-limiting conditions in the mushroom Ganoderma Lucidum. Microb Cell Fact 22(1):205. https://doi.org/10.1186/s12934-023-02213-z. (PMID: 10.1186/s12934-023-02213-z3781715910563202)
      Limjindaporn T, Khalaf RA, Fonzi WA (2003) Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol 50(3):993–1004. https://doi.org/10.1046/j.1365-2958.2003.03747.x. (PMID: 10.1046/j.1365-2958.2003.03747.x14617156)
      Liu Z, Thornton J, Spírek M, Butow RA (2008) Activation of the SPS amino acid-sensing pathway in Saccharomyces cerevisiae correlates with the phosphorylation state of a sensor component, Ptr3. Mol Cell Biol 28(2):551–563. https://doi.org/10.1128/mcb.00929-07. (PMID: 10.1128/mcb.00929-0717984223)
      Ljungdahl PO, Daignan-Fornier B (2012) Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190(3):885–929. https://doi.org/10.1534/genetics.111.133306. (PMID: 10.1534/genetics.111.133306224190793296254)
      Lleixà J, Martín V, Giorello F, Portillo MC, Carrau F, Beltran G, Mas A (2018) Analysis of the NCR mechanisms in Hanseniaspora vineae and Saccharomyces cerevisiae during Winemaking. Front Genet 9:747. https://doi.org/10.3389/fgene.2018.00747. (PMID: 10.3389/fgene.2018.0074730687397)
      Lu K, Wu B, Wang J, Zhu W, Nie H, Qian J, Huang W, Fang Z (2018) Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnol J 16(10):1710–1722. https://doi.org/10.1111/pbi.12907. (PMID: 10.1111/pbi.12907294797796131477)
      Lyu X, Liu Y (2020) Nonoptimal Codon usage is critical for protein structure and function of the Master General amino Acid Control Regulator CPC-1. mBio 11(5). https://doi.org/10.1128/mBio.02605-20.
      Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290(1):1–18. https://doi.org/10.1016/S0378-1119(02)00558-9. (PMID: 10.1016/S0378-1119(02)00558-912062797)
      Martho KF, de Melo AT, Takahashi JP, Guerra JM, Santos DC, Purisco SU, Melhem MS, Fazioli RD, Phanord C, Sartorelli P, Vallim MA, Pascon RC (2016) Amino acid permeases and virulence in Cryptococcus neoformans. PLoS ONE 11(10):e0163919. https://doi.org/10.1371/journal.pone.0163919. (PMID: 10.1371/journal.pone.0163919276950805047642)
      Martínez P, Ljungdahl PO (2005) Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol Cell Biol 25(21):9435–9446. https://doi.org/10.1128/mcb.25.21.9435-9446.2005. (PMID: 10.1128/mcb.25.21.9435-9446.2005162275941265835)
      McCarthy MW, Walsh TJ (2018) Amino acid metabolism and transport mechanisms as potential antifungal targets. Int J Mol Sci 19(3). https://doi.org/10.3390/ijms19030909.
      Milhomem Cruz-Leite VR, Salem-Izacc SM, Novaes E, Neves BJ, de Almeida Brito W, O’Hara Souza L, Silva JD, Paccez JA, Parente-Rocha M, Pereira C (2020) Nitrogen Catabolite repression in members of Paracoccidioides complex. Microb Pathog 149:104281 Maria de Almeida Soares, C. L. Borges. https://doi.org/10.1016/j.micpath.2020.104281. (PMID: 10.1016/j.micpath.2020.10428132585293)
      Minehart PL, Magasanik B (1991) Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol 11(12):6216–6228. https://doi.org/10.1128/mcb.11.12.6216-6228.1991. (PMID: 10.1128/mcb.11.12.6216-6228.19911682800361808)
      Miramón P, Pountain AW, v. Hoof A, Lorenz MC (2020) The paralogous transcription factors Stp1 and Stp2 of Candida albicans have distinct functions in Nutrient Acquisition and host Interaction. 88(5). https://doi.org/10.1128/iai.00763–19.
      Nair A, Sarma SJ (2021) The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res 251:126831. https://doi.org/10.1016/j.micres.2021.126831. (PMID: 10.1016/j.micres.2021.12683134325194)
      Nair A, Sarma SJ (2021a) The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiol Res 251:126831. https://doi.org/10.1016/j.micres.2021.126831. (PMID: 10.1016/j.micres.2021.12683134325194)
      Okumoto S, Schmidt R, Tegeder M, Fischer WN, Rentsch D, Frommer WB, Koch W (2002) High Affinity amino acid transporters specifically expressed in Xylem Parenchyma and developing seeds of Arabidopsis *. J Biol Chem 277(47):45338–45346. https://doi.org/10.1074/jbc.M207730200. (PMID: 10.1074/jbc.M20773020012244056)
      Okumoto S, Koch W, Tegeder M, Fischer WN, Biehl A, Leister D, Stierhof YD, Frommer WB (2004) Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3. J Exp Bot 55(406):2155–2168. https://doi.org/10.1093/jxb/erh233. (PMID: 10.1093/jxb/erh23315361541)
      Oliveira E, M M, J Mansure M, d. P E (2005) Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae. FEMS Yeast Res 5(6–7):605–609. https://doi.org/10.1016/j.femsyr.2004.11.011 . J FEMS Yeast Research. (PMID: 10.1016/j.femsyr.2004.11.01115780659)
      Omnus D, Ljungdahl P (2013) Rts1-protein phosphatase 2A antagonizes Ptr3-mediated activation of the signaling protease Ssy5 by casein kinase I. Molecular biology of the cell 24. https://doi.org/10.1091/mbc.E13-01-0019.
      Omura F, Fujita A, Miyajima K, Fukui N (2005) Engineering of yeast Put4 permease and its application to lager yeast for efficient proline assimilation. Biosci Biotechnol Biochem 69(6):1162–1171. https://doi.org/10.1271/bbb.69.1162. (PMID: 10.1271/bbb.69.116215973048)
      Peng B, Sun X, Tian X, Kong D, He L, Peng J, Liu Y, Guo G, Sun Y, Pang R, Zhou W, Zhao J, Wang Q (2023) OsNAC74 affects grain protein content and various biological traits by regulating OsAAP6 expression in rice. Mol Breed 43(12):87. https://doi.org/10.1007/s11032-023-01433-w. (PMID: 10.1007/s11032-023-01433-w3803765510684849)
      Peng B, Zhang Q, Liu Y, Zhao Q, Zhao J, Zhang Z, Sun X, Peng J, Sun Y, Song X, Guo G, Huang Y, Pang R, Zhou W, Wang Q (2024) OsAAP8 mutation leads to significant improvement in the nutritional quality and appearance of rice grains. Mol Breeding 44(5):34. https://doi.org/10.1007/s11032-024-01473-w. (PMID: 10.1007/s11032-024-01473-w)
      Pérez-Delos Santos FJ, Riego-Ruiz L (2016) Gln3 is a main regulator of nitrogen assimilation in Candida Glabrata. Microbiol (Reading) 162(8):1490–1499. https://doi.org/10.1099/mic.0.000312. (PMID: 10.1099/mic.0.000312)
      Petraitis V, Petraitiene R, Kelaher AM, Sarafandi AA, Sein T, Mickiene D, Bacher J, Groll AH, Walsh TJ (2004) Efficacy of PLD-118, a novel inhibitor of candida isoleucyl-tRNA synthetase, against experimental oropharyngeal and esophageal candidiasis caused by fluconazole-resistant C. Albicans. Antimicrob Agents Chemother 48(10):3959–3967. https://doi.org/10.1128/aac.48.10.3959-3967.2004. (PMID: 10.1128/aac.48.10.3959-3967.200415388459521932)
      Pfannmüller A, Wagner D, Sieber C, Schönig B, Boeckstaens M, Marini AM, Tudzynski B (2015) The general amino acid permease FfGap1 of Fusarium fujikuroi is sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 kinase-independent manner. PLoS ONE 10(4):e0125487. https://doi.org/10.1371/journal.pone.0125487. (PMID: 10.1371/journal.pone.0125487259098584409335)
      Poole K, M EW, Warren T, Gardner J, McBryde C, de Barros Lopes M, Jiranek V (2009) Proline transport and stress tolerance of ammonia-insensitive mutants of the PUT4-encoded proline-specific permease in yeast. J Gen Appl Microbiol 55(6):427–439. https://doi.org/10.2323/jgam.55.427. (PMID: 10.2323/jgam.55.42720118607)
      Regenberg B, Düring-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36(6):317–328. https://doi.org/10.1007/s002940050506. (PMID: 10.1007/s00294005050610654085)
      Risinger AL, Cain NE, Chen EJ, Kaiser CA (2006) Activity-dependent reversible inactivation of the general amino acid permease. Mol Biol Cell 17(10):4411–4419. https://doi.org/10.1091/mbc.e06-06-0506. (PMID: 10.1091/mbc.e06-06-0506168854151635348)
      Sáenz DA, Chianelli MS, Stella CA (2014) L-Phenylalanine Transport in Saccharomyces cerevisiae: Participation of GAP1, BAP2, and AGP1. J Amino Acids 2014: 283962. https://doi.org/10.1155/2014/283962.
      Sanders A, Collier R, Trethewy A, Gould G, Sieker R, Tegeder M (2009) AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J 59(4):540–552. https://doi.org/10.1111/j.1365-313X.2009.03890.x. (PMID: 10.1111/j.1365-313X.2009.03890.x19392706)
      Schmidt A, Hall MN, Koller A (1994) Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol Cell Biol 14(10):6597–6606. https://doi.org/10.1128/mcb.14.10.6597-6606.1994. (PMID: 10.1128/mcb.14.10.6597-6606.19947523855359189)
      Schmidt R, Stransky H, Koch W (2007) The amino acid permease AAP8 is important for early seed development in Arabidopsis thaliana. Planta 226(4):805–813. https://doi.org/10.1007/s00425-007-0527-x. (PMID: 10.1007/s00425-007-0527-x17476526)
      Schreve JL, Garrett JM (2004) Yeast Agp2p and Agp3p function as amino acid permeases in poor nutrient conditions. Biochem Biophys Res Commun 313(3):745–751. https://doi.org/10.1016/j.bbrc.2003.11.172. (PMID: 10.1016/j.bbrc.2003.11.17214697254)
      Shang XY, Zhang G, Zhang X, Chai A, Deng Y, Liang T Wen (2013) Characterization and molecular mechanism of AroP as an aromatic amino acid and histidine transporter in Corynebacterium glutamicum. J Bacteriol 195(23):5334–5342. https://doi.org/10.1128/jb.00971-13.
      Shanmugam R, Anderson R, Schiemann AH, Sattlegger E (2024) Evidence that Xrn1 is in complex with Gcn1, and is required for full levels of eIF2α phosphorylation. Biochem J 481(7):481–498. https://doi.org/10.1042/bcj20220531. (PMID: 10.1042/bcj2022053138440860)
      Shi Y, Zhang Y, Sun Y, Xie Z, Luo Y, Long Q, Feng J, Liu X, Wang B, He D, Ren J, Guo P, Xing J, He L, Fernie AR, Chen W, Liu X, Luo Y, Jin C, Luo J (2023) Natural variations of OsAUX5, a target gene of OsWRKY78, control the neutral essential amino acid content in rice grains. Mol Plant 16(2):322–336. https://doi.org/10.1016/j.molp.2022.12.013. (PMID: 10.1016/j.molp.2022.12.01336540024)
      Silao FGS, Ward M, Ryman K, Wallström A, Brindefalk B, Udekwu K, Ljungdahl PO (2019) Mitochondrial proline catabolism activates Ras1/cAMP/PKA-induced filamentation in Candida albicans. PLoS Genet 15(2):e1007976. https://doi.org/10.1371/journal.pgen.1007976. (PMID: 10.1371/journal.pgen.1007976307426186386415)
      Speelmans G, Poolman B, Konings WN (1993) Amino acid transport in the thermophilic anaerobe Clostridium Fervidus is driven by an electrochemical sodium gradient. J Bacteriol 175(7):2060–2066. https://doi.org/10.1128/jb.175.7.2060-2066.1993. (PMID: 10.1128/jb.175.7.2060-2066.19938096211204302)
      Stovall AK, Knowles CM, Kalem MC, Panepinto JC (2021) A conserved Gcn2-Gcn4 Axis Links Methionine utilization and the oxidative stress response in Cryptococcus neoformans. Front Fungal Biol 2. https://doi.org/10.3389/ffunb.2021.640678.
      Struck C (2015) Amino acid uptake in rust fungi. Front Plant Sci 6:40. https://doi.org/10.3389/fpls.2015.00040. (PMID: 10.3389/fpls.2015.00040256990684318339)
      Struck C, Mueller E, Martin H, Lohaus G (2004) The Uromyces fabae UfAAT3 gene encodes a general amino acid permease that prefers uptake of in planta scarce amino acids. Mol Plant Pathol 5(3):183–189. https://doi.org/10.1111/j.1364-3703.2004.00222.x. (PMID: 10.1111/j.1364-3703.2004.00222.x20565608)
      Sundaram A, Grant CM (2014) A single inhibitory upstream open reading frame (uORF) is sufficient to regulate Candida albicans GCN4 translation in response to amino acid starvation conditions. RNA 20(4):559–567. https://doi.org/10.1261/rna.042267.113. (PMID: 10.1261/rna.042267.113245704813964917)
      Svennerstam H, Ganeteg U, Näsholm T (2008) Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytol 180(3):620–630. https://doi.org/10.1111/j.1469-8137.2008.02589.x. (PMID: 10.1111/j.1469-8137.2008.02589.x18681934)
      Tanahashi R, Nishimura A, Morita F, Nakazawa H, Taniguchi A, Ichikawa K, Nakagami K, Boundy-Mills K, Takagi H (2023) The arginine transporter Can1 acts as a transceptor for regulation of proline utilization in the yeast Saccharomyces cerevisiae. Yeast 40(8):333–348. https://doi.org/10.1002/yea.3836. (PMID: 10.1002/yea.383636573467)
      Tate JJ, Buford D, Rai R, Cooper TG (2017) General amino acid control and 14-3-3 proteins Bmh1/2 are required for Nitrogen Catabolite repression-sensitive regulation of Gln3 and Gat1 localization. Genetics 205(2):633–655. https://doi.org/10.1534/genetics.116.195800. (PMID: 10.1534/genetics.116.19580028007891)
      Taylor MR, Reinders A, Ward JM (2015) Transport function of rice amino acid permeases (AAPs). Plant Cell Physiol 56(7):1355–1363. https://doi.org/10.1093/pcp/pcv053. (PMID: 10.1093/pcp/pcv05325907566)
      Tegeder M, Masclaux-Daubresse C (2018) Source and sink mechanisms of nitrogen transport and use. New Phytol 217(1):35–53. https://doi.org/10.1111/nph.14876. (PMID: 10.1111/nph.1487629120059)
      Tegeder M, Ward JM (2012) Molecular evolution of plant AAP and LHT amino acid transporters. Front Plant Sci 3:21. https://doi.org/10.3389/fpls.2012.00021. (PMID: 10.3389/fpls.2012.00021226455743355764)
      ter Schure EG, van Riel NAW, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24(1):67–83. https://doi.org/10.1016/S0168-6445(99)00030-3. (PMID: 10.1016/S0168-6445(99)00030-310640599)
      ter Schure EG, van Riel NA, Verrips CT (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24(1):67–83. https://doi.org/10.1111/j.1574-6976.2000.tb00533.x. (PMID: 10.1111/j.1574-6976.2000.tb00533.x10640599)
      Tripathi G, Wiltshire C, Macaskill S, Tournu H, Budge S, Brown AJ (2002) Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. Embo j 21(20):5448–5456. https://doi.org/10.1093/emboj/cdf507. (PMID: 10.1093/emboj/cdf50712374745129063)
      Tumusiime S, Zhang C, Overstreet MS, Liu Z (2011) Differential Regulation of transcription factors Stp1 and Stp2 in the Ssy1-Ptr3-Ssy5 amino acid sensing Pathway*. J Biol Chem 286(6):4620–4631. https://doi.org/10.1074/jbc.M110.195313. (PMID: 10.1074/jbc.M110.19531321127045)
      Vylkova S, Lorenz MC (2014) Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog 10(3):e1003995. https://doi.org/10.1371/journal.ppat.1003995. (PMID: 10.1371/journal.ppat.1003995246264293953444)
      Wacker IH, Ludwig I, Reif HM, Blencke C, Detsch J, Stülke (2003) The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB operon by the catabolite control protein CcpA. Microbiology (Reading) 149(Pt 10):3001–3009. https://doi.org/10.1099/mic.0.26479-0.
      Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22(6):1365–1374. https://doi.org/10.1093/molbev/msi126. (PMID: 10.1093/molbev/msi12615758206)
      Wan Y, Wang Y, Shi Z, Rentsch D, Ward JL, Hassall K, Sparks CA, Huttly AK, Buchner P, Powers S, Shewry PR, Hawkesford MJ (2021) Wheat amino acid transporters highly expressed in grain cells regulate amino acid accumulation in grain. PLoS ONE 16(2):e0246763. https://doi.org/10.1371/journal.pone.0246763. (PMID: 10.1371/journal.pone.0246763336066977894817)
      Wang J, Wu B, Lu K, Wei Q, Qian J, Chen Y, Fang Z (2019) The amino acid permease 5 (OsAAP5) regulates Tiller Number and Grain Yield in Rice. Plant Physiol 180(2):1031–1045. https://doi.org/10.1104/pp.19.00034. (PMID: 10.1104/pp.19.00034308906636548276)
      Wielemans K, Jean C, Vissers S, André B (2010) Amino acid signaling in Yeast: Post-genome Duplication divergence of the Stp1 and Stp2 transcription Factors*. J Biol Chem 285(2):855–865. https://doi.org/10.1074/jbc.M109.015263. (PMID: 10.1074/jbc.M109.01526319906648)
      Wu B, Ottow K, Poulsen P, Gaber RF, Albers E, Kielland-Brandt MC (2006) Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p. J Cell Biol 173(3):327–331. https://doi.org/10.1083/jcb.200602089. (PMID: 10.1083/jcb.200602089166513822063833)
      Yuan W, Guo S, Gao J, Zhong M, Yan G, Wu W, Chao Y, Jiang Y (2017) General Control Nonderepressible 2 (GCN2) kinase inhibits target of Rapamycin Complex 1 in response to amino acid starvation in Saccharomyces cerevisiae. J Biol Chem 292(7):2660–2669. https://doi.org/10.1074/jbc.M116.772194. (PMID: 10.1074/jbc.M116.772194280577555314164)
      Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M (2010) Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell 22(11):3603–3620. https://doi.org/10.1105/tpc.110.073833. (PMID: 10.1105/tpc.110.073833210757693015121)
      Zhang P, Di Y, Zhou J, Du G, Chen J, Shi Z (2016) Ubiquitination regulation of histidine transporter Hip1p on histidine utilization in Saccharomyces cerevisiae. Wei Sheng Wu Xue Bao 56(10):1544–1550. (PMID: 29741343)
      Zhang W, Du G, Zhou J, Chen J (2018) Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. 82(1). https://doi.org/10.1128/mmbr.00040-17.
      Zhang W, Du G, Zhou J, Chen J (2018a) Regulation of sensing, Transportation, and catabolism of Nitrogen sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 82(1). https://doi.org/10.1128/mmbr.00040-17.
      Zhang D, Wang F, Yu Y, Ding S, Chen T, Sun W, Liang C, Yu B, Ying H, Liu D, Chen Y (2021) Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm. Appl Microbiol Biotechnol 105(9):3635–3648. https://doi.org/10.1007/s00253-021-11280-4. (PMID: 10.1007/s00253-021-11280-433852023)
      Zhao S, Zhao X, Zou H, Fu J, Du G, Zhou J, Chen J (2014) Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. J Proteom 101:102–112. https://doi.org/10.1016/j.jprot.2014.01.031. (PMID: 10.1016/j.jprot.2014.01.031)
      Zhao X, Zou H, Chen J, Du G, Zhou J (2016) The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae. Sci Rep 6:21603. https://doi.org/10.1038/srep21603. (PMID: 10.1038/srep21603268991434761935)
      Zhou X, Yu D, Cao Z (2022) Convergence analysis of Rust Fungi and Anther Smuts reveals their common molecular adaptation to a phytoparasitic lifestyle. Front Genet 13:863617. https://doi.org/10.3389/fgene.2022.863617. (PMID: 10.3389/fgene.2022.863617354648589023891)
    • Contributed Indexing:
      Keywords: Amino acid permeases; Amino acids; Fungi; Regulatory pathways
    • Accession Number:
      0 (Amino Acid Transport Systems)
      0 (Amino Acids)
      0 (Fungal Proteins)
      N762921K75 (Nitrogen)
    • Publication Date:
      Date Created: 20241124 Date Completed: 20241124 Latest Revision: 20241213
    • Publication Date:
      20241214
    • Accession Number:
      10.1007/s11274-024-04199-1
    • Accession Number:
      39581943