Screening the Global Health Priority Box against Plasmodium berghei liver stage parasites using an inexpensive luciferase detection protocol.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101139802 Publication Model: Electronic Cited Medium: Internet ISSN: 1475-2875 (Electronic) Linking ISSN: 14752875 NLM ISO Abbreviation: Malar J Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2002-
    • Subject Terms:
    • Abstract:
      Background: Malaria, a disease caused by parasites of the genus Plasmodium, continues to impact many regions globally. The rise in resistance to artemisinin-based anti-malarial drugs highlights the need for new treatments. Ideally, new anti-malarials will kill the asymptomatic liver stages as well as the symptomatic blood stages. While blood stage screening assays are routine and efficient, liver stage screening assays are more complex and costly. To decrease the cost of liver stage screening, a previously reported luciferase detection protocol requiring only common laboratory reagents was adapted for testing against luciferase-expressing Plasmodium berghei liver stage parasites.
      Methods: After optimizing cell lysis conditions, the concentration of reagents, and the density of host hepatocytes (HepG2), the protocol was validated with 28 legacy anti-malarials to show this simple protocol produces a stable signal useful for obtaining quality small molecule potency data similar to that obtained from a high content imaging endpoint. The protocol was then used to screen the Global Health Priority Box (GHPB) and confirm the potency of hits in dose-response assays. Selectivity was determined using a galactose-based, 72 h HepG2 assay to avoid missing mitochondrial-toxic compounds due to the Crabtree effect. Receiver-operator characteristic plots were used to retroactively characterize the screens' predictive value.
      Results: Optimal luciferase signal was achieved using a lower HepG2 seed density (5 × 10 3 cells/well of a 384-well microtitre plate) compared to many previously reported luciferase-based screens. While producing lower signal compared to a commercial alternative, this luciferase detection method was found much more stable, with a > 3 h half-life, and robust enough for producing dose-response plots with as few as 500 sporozoites/well. A screen of the GHPB resulted in 9 hits with selective activity against P. berghei liver schizonts, including MMV674132 which exhibited 30.2 nM potency. Retrospective analyses show excellent predictive value for both anti-malarial activity and cytotoxicity.
      Conclusions: This method is suitable for high-throughput screening at a cost nearly 20-fold less than using commercial luciferase detection kits, thereby enabling larger liver stage anti-malarial screens and hit optimization make-test cycles. Further optimization of the hits detected using this protocol is ongoing.
      Competing Interests: Declarations. Ethics approval and consent to participate: Animal use protocols were reviewed and approved by the UGA IACUC (A2023 03–018). Consent for publication: Not applicable. Competing interests: The authors have no competing interests to declare.
      (© 2024. The Author(s).)
    • References:
      Science. 2011 Dec 9;334(6061):1372-7. (PMID: 22096101)
      Cell Chem Biol. 2024 Apr 18;31(4):743-759.e8. (PMID: 38593807)
      Sci Rep. 2021 Jan 22;11(1):2121. (PMID: 33483532)
      Travel Med Infect Dis. 2020 Jul - Aug;36:101765. (PMID: 32561392)
      Expert Opin Drug Discov. 2010 Sep;5(9):835-49. (PMID: 22823259)
      Malar J. 2014 Jan 03;13:2. (PMID: 24386891)
      Science. 2018 Dec 7;362(6419):. (PMID: 30523084)
      J Biomol Screen. 2013 Apr;18(4):453-61. (PMID: 23112084)
      Malar J. 2022 Sep 13;21(1):264. (PMID: 36100902)
      J Med Chem. 2012 Apr 12;55(7):3479-87. (PMID: 22390538)
      Nat Rev Dis Primers. 2017 Aug 03;3:17050. (PMID: 28770814)
      Antimicrob Agents Chemother. 2018 Mar 27;62(4):. (PMID: 29339390)
      Biochem Pharmacol. 1996 Mar 8;51(5):693-700. (PMID: 8615907)
      Assay Drug Dev Technol. 2014 Jan-Feb;12(1):43-54. (PMID: 24229356)
      Biochem Pharmacol. 1992 Apr 1;43(7):1545-53. (PMID: 1314606)
      Cold Spring Harb Perspect Med. 2017 Sep 1;7(9):. (PMID: 28490540)
      Nature. 2015 Jun 18;522(7556):315-20. (PMID: 26085270)
      Nat Commun. 2019 Jul 19;10(1):3226. (PMID: 31324806)
      Trends Parasitol. 2016 Sep;32(9):682-696. (PMID: 27289273)
      Mol Biochem Parasitol. 1995 Jan;69(1):135-8. (PMID: 7723784)
      J Antimicrob Chemother. 2018 May 1;73(5):1279-1290. (PMID: 29420756)
      Parasitol Int. 2007 Sep;56(3):171-8. (PMID: 17513164)
      Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4400-5. (PMID: 21300861)
      Chembiochem. 2014 Sep 5;15(13):1920-30. (PMID: 25111632)
      Cell Host Microbe. 2019 Jul 10;26(1):35-47. (PMID: 31295423)
      Sci Rep. 2017 May 24;7(1):2325. (PMID: 28539634)
      Antimicrob Agents Chemother. 2004 Jun;48(6):2214-22. (PMID: 15155224)
      Drug Des Devel Ther. 2020 Sep 22;14:3875-3889. (PMID: 33061294)
      Malar J. 2017 Jan 13;16(1):26. (PMID: 28086874)
      Bio Protoc. 2021 Dec 05;11(23):e4253. (PMID: 35005096)
      Cell Chem Biol. 2019 Sep 19;26(9):1253-1262.e5. (PMID: 31257182)
      Malar J. 2014 Jun 10;13:228. (PMID: 24916383)
      Antimicrob Agents Chemother. 2006 Apr;50(4):1586-9. (PMID: 16569892)
      Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 1985;3(4):281-3. (PMID: 3915734)
      Assay Drug Dev Technol. 2010 Apr;8(2):175-85. (PMID: 20085486)
      Toxicol Sci. 2007 Jun;97(2):539-47. (PMID: 17361016)
      Sci Rep. 2021 Oct 7;11(1):19905. (PMID: 34620901)
      Eur J Med Chem. 2014 Jul 23;82:204-13. (PMID: 24904967)
      Nature. 2016 Oct 20;538(7625):344-349. (PMID: 27602946)
      Antimicrob Agents Chemother. 2017 Jul 25;61(8):. (PMID: 28584157)
      Antimicrob Agents Chemother. 2007 Oct;51(10):3485-90. (PMID: 17698630)
      Antimicrob Agents Chemother. 2010 Mar;54(3):1042-6. (PMID: 20028825)
      Sci Transl Med. 2015 Jul 15;7(296):296ra111. (PMID: 26180101)
      PLoS One. 2009;4(4):e5078. (PMID: 19337374)
      Biochemistry. 2020 Mar 3;59(8):911-920. (PMID: 32073254)
      Antimicrob Agents Chemother. 2013 Jan;57(1):417-24. (PMID: 23129047)
      ACS Chem Biol. 2013 Jan 18;8(1):133-7. (PMID: 23043646)
      Nat Microbiol. 2017 Mar 13;2:17031. (PMID: 28288098)
      Trends Parasitol. 2011 Dec;27(12):565-74. (PMID: 22015112)
      ACS Infect Dis. 2016 Apr 8;2(4):281-293. (PMID: 27275010)
      Mol Biochem Parasitol. 2006 Jan;145(1):60-70. (PMID: 16242190)
      Proc Natl Acad Sci U S A. 2012 May 29;109(22):8511-6. (PMID: 22586124)
      Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16823-8. (PMID: 23035243)
      J Infect Dis. 2005 Nov 15;192(10):1823-9. (PMID: 16235184)
    • Grant Information:
      G2023-104R1 Global Health Innovation Technology Fund; G2023-104R1 Global Health Innovation Technology Fund; 1R01AI15329001 National Institutes of Allergy and Infectious Diseases; 1R01AI15329001 National Institutes of Allergy and Infectious Diseases; RD/15/0022 Medicines for Malaria Venture
    • Accession Number:
      EC 1.13.12.- (Luciferases)
      0 (Antimalarials)
    • Publication Date:
      Date Created: 20241123 Date Completed: 20241123 Latest Revision: 20241126
    • Publication Date:
      20241202
    • Accession Number:
      PMC11585928
    • Accession Number:
      10.1186/s12936-024-05155-y
    • Accession Number:
      39580415