Menu
×
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×

The role of the SOX2 gene in cervical cancer: focus on ferroptosis and construction of a predictive model.
Item request has been placed!
×
Item request cannot be made.
×

- Author(s): Liu S;Liu S; Wei Z; Wei Z; Ding H; Ding H
- Source:
Journal of cancer research and clinical oncology [J Cancer Res Clin Oncol] 2024 Nov 23; Vol. 150 (12), pp. 509. Date of Electronic Publication: 2024 Nov 23.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 7902060 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-1335 (Electronic) Linking ISSN: 01715216 NLM ISO Abbreviation: J Cancer Res Clin Oncol Subsets: MEDLINE
- Publication Information: Original Publication: Berlin ; New York : Springer-Verlag.
- Subject Terms: Ferroptosis*/genetics ; Uterine Cervical Neoplasms*/genetics ; Uterine Cervical Neoplasms*/pathology ; Uterine Cervical Neoplasms*/metabolism ; SOXB1 Transcription Factors*/genetics ; SOXB1 Transcription Factors*/metabolism; Humans ; Female ; Prognosis ; Biomarkers, Tumor/genetics ; Biomarkers, Tumor/metabolism ; Gene Expression Regulation, Neoplastic
- Abstract: Background: The intricate interplay between stemness markers and cell death pathways significantly influences the pathophysiology of cervical cancer. SOX2, a pivotal regulator of stem cell pluripotency, has recently been implicated in the modulation of ferroptosis, a specialized form of iron-dependent cell death, in cancer dynamics. This study delineates the role of SOX2 in the ferroptotic landscape of cervical carcinoma.
Objective: To delineate the association between SOX2 expression and ferroptosis in cervical cancer and develop a robust, SOX2-centric model for predicting prognosis and enhancing personalized treatment.
Methods: A multidimensional approach integrating advanced bioinformatics, comprehensive molecular profiling, and state-of-the-art machine learning algorithms was employed to assess SOX2 expression patterns and their correlation with ferroptosis marker expression patterns in cervical cancer tissues. A prognostic model incorporating the expression levels of SOX2 and ferroptosis indicators was meticulously constructed.
Results: This investigation revealed a profound and intricate correlation between SOX2 expression and ferroptotic processes in cervical cancer, substantiated by robust molecular evidence. The developed predictive model based on SOX2 expression exhibited superior prognostic accuracy and may guide therapeutic decision-making.
Conclusion: This study underscores the critical role of SOX2 in orchestrating the ferroptosis pathway in cervical cancer and presents a novel prognostic framework. The SOX2-centric predictive model represents a significant advancement in prognosis evaluation, offering a gateway to personalized treatment for gynaecologic cancers.
Competing Interests: Declarations. Conflict of interest: The authors declare no competing interests. Ethical approval and consent to participate: All authors are aware of the manuscript's submission and consent to its publication. Consent for publication: All authors have approved the submission and publication of this manuscript.
(© 2024. The Author(s).) - Comments: Erratum in: J Cancer Res Clin Oncol. 2024 Dec 28;151(1):27. doi: 10.1007/s00432-024-06054-0. (PMID: 39731582)
- References: Afify SM et al (2023) Cancer stem cells as the source of tumor associated myoepithelial cells in the tumor microenvironment developing ductal carcinoma in situ. Biomaterials 301:122249. (PMID: 375065111053024510.1016/j.biomaterials.2023.122249)
Basha O et al (2018) The DifferentialNet database of differential protein–protein interactions in human tissues. Nucleic Acids Res 46(D1):D522–D526. (PMID: 2906944710.1093/nar/gkx981)
Bogani G et al (2024) HPV persistence after cervical surgical excision of high-grade cervical lesions. Cancer Cytopathol 132(5):268–269. (PMID: 3774776310.1002/cncy.22760)
Cancer Genome Atlass Network (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nat 517(7536):576–82.
Cao M et al (2023) Characterization of immature ovarian teratomas through single-cell transcriptome. Front Immunol 14:1131814. (PMID: 369369091002033010.3389/fimmu.2023.1131814)
Chang S et al (2023) Ferrodifferentiation regulates neurodevelopment via ROS generation. Sci China Life Sci. https://doi.org/10.1007/s11427-022-2297-y. (PMID: 10.1007/s11427-022-2297-y3809788910202752)
Chen X et al (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18(5):280–296. (PMID: 3351491010.1038/s41571-020-00462-0)
Cho HJ, Jung HJ (2023) Cyclophilin A inhibitors suppress proliferation and induce apoptosis of MKN45 gastric cancer stem-like cells by regulating CypA/CD147-mediated signaling pathway. Int J Mol Sci 24(5):4734. (PMID: 369021611000319310.3390/ijms24054734)
Cho JH et al (2022) RKIP induction promotes tumor differentiation via SOX2 degradation in NF2-deficient conditions. Mol Cancer Res 20(3):412–424. (PMID: 3472855310.1158/1541-7786.MCR-21-0373)
Cohen PA et al (2019) Cervical cancer. Lancet 393(10167):169–182. (PMID: 3063858210.1016/S0140-6736(18)32470-X)
Di Fiore R et al (2022) Cancer stem cells and their possible implications in cervical cancer: a short review. Int J Mol Sci 23(9):5167. https://www.mdpi.com/1422-0067/23/9/5167. (PMID: 35563557910606510.3390/ijms23095167)
Frevert ML, Taran FA (2022) Human papillomavirus vaccines: a great leap forward. Case Rep Womens Health 33:e00388. (PMID: 35145882880205010.1016/j.crwh.2022.e00388)
Garcia-Ortega MB et al (2023) Interferon-alpha decreases cancer stem cell properties and modulates exosomes in malignant melanoma. Cancers (Basel) 15(14):3666. (PMID: 3750932710.3390/cancers15143666)
Geeleher P, Cox NJ, Huang RS (2014) Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol 15(3):R47. (PMID: 24580837405409210.1186/gb-2014-15-3-r47)
Golia D’Augè T et al (2024) State of the art on HPV-related cervical lesions. Italian J Gynaecol Obstet 36(02):135–137. (PMID: 10.36129/jog.2024.161)
Guo L et al (2023) Targeting ITGB4/SOX2-driven lung cancer stem cells using proteasome inhibitors. iScience 26(8):107302. (PMID: 375544521040506610.1016/j.isci.2023.107302)
Han L et al (2023) CLDN5 identified as a biomarker for metastasis and immune infiltration in gastric cancer via pan-cancer analysis. Aging (Albany NY) 15(11):5032–5051. (PMID: 37286335)
Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform 14:7. (PMID: 10.1186/1471-2105-14-7)
Jeong SH et al (2020) Nomogram for predicting gastric cancer recurrence using biomarker gene expression. Eur J Surg Oncol 46(1):195–201. (PMID: 3156447510.1016/j.ejso.2019.09.143)
Jiang Q et al (2021) Establishment of an immune cell infiltration score to help predict the prognosis and chemotherapy responsiveness of gastric cancer patients. Front Oncol 11:650673. (PMID: 34307129829933410.3389/fonc.2021.650673)
Kaminker JD, Timoshenko AV (2021) Expression, regulation, and functions of the galectin-16 gene in human cells and tissues. Biomolecules 11(12):1909. (PMID: 34944551869933210.3390/biom11121909)
Kar SP et al (2017) Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci. Br J Cancer 116(4):524–535. (PMID: 28103614531896910.1038/bjc.2016.426)
Leemans CR, Snijders P, Brakenhoff RH (2018) The molecular landscape of head and neck cancer. Nat Rev Cancer 18(5):269–282. (PMID: 2949714410.1038/nrc.2018.11)
Lian H et al (2019) Integrative analysis of gene expression and DNA methylation through one-class logistic regression machine learning identifies stemness features in medulloblastoma. Mol Oncol 13(10):2227–2245. (PMID: 31385424676378710.1002/1878-0261.12557)
Liang C et al (2019) Recent progress in ferroptosis inducers for cancer therapy. Adv Mater 31(51):e1904197. (PMID: 3159556210.1002/adma.201904197)
Lin W et al (2020) Characterization of hypoxia signature to evaluate the tumor immune microenvironment and predict prognosis in glioma groups. Front Oncol 10:796. (PMID: 32500034724312510.3389/fonc.2020.00796)
Lin A, Yang H, Shi Y, Cheng Q, Liu Z, Zhang J, Luo P (2022) PanCanSurvPlot: A Large-scale Pancancer Survival Analysis Web Application. BioRxiv. https://doi.org/10.1101/2022.12.25.521884.
Liu Z et al (2020) A lncRNA prognostic signature associated with immune infiltration and tumour mutation burden in breast cancer. J Cell Mol Med 24(21):12444–12456. (PMID: 32967061768700310.1111/jcmm.15762)
Malta TM et al (2018) Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell 173(2):338-354.e15. (PMID: 29625051590219110.1016/j.cell.2018.03.034)
Martell E et al (2023) Compensatory cross-talk between autophagy and glycolysis regulates senescence and stemness in heterogeneous glioblastoma tumor subpopulations. Acta Neuropathol Commun 11(1):110. (PMID: 374203111032718210.1186/s40478-023-01604-y)
Nie J et al (2023) ASCL1-mediated ferroptosis resistance enhances the progress of castration-resistant prostate cancer to neurosecretory prostate cancer. Free Radic Biol Med 205:318–331. (PMID: 3735505310.1016/j.freeradbiomed.2023.06.006)
Ravi R et al (2018) Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFbeta enhance the efficacy of cancer immunotherapy. Nat Commun 9(1):741. (PMID: 29467463582187210.1038/s41467-017-02696-6)
Salnikov M et al (2022) The HPV induced cancer resource (THInCR): a suite of tools for investigating HPV-dependent human carcinogenesis. mSphere 7(4):e0031722. (PMID: 3595076410.1128/msphere.00317-22)
Sedlic F et al (2020) mitochondrial ROS induce partial dedifferentiation of human mesothelioma via upregulation of NANOG. Antioxid (Basel) 9(7):606. (PMID: 10.3390/antiox9070606)
Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421. (PMID: 35803244927302210.1016/j.cell.2022.06.003)
Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. (PMID: 3353833810.3322/caac.21660)
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. (PMID: 1690417410.1016/j.cell.2006.07.024)
Wang X et al (2023) Mitochondrial carrier 1 (MTCH1) governs ferroptosis by triggering the FoxO1-GPX4 axis-mediated retrograde signaling in cervical cancer cells. Cell Death Dis 14(8):508. (PMID: 375502821040680410.1038/s41419-023-06033-2)
Wei J et al (2020) Characterization of glycolysis-associated molecules in the tumor microenvironment revealed by pan-cancer tissues and lung cancer single cell data. Cancers (Basel) 12(7):1788. (PMID: 3263545810.3390/cancers12071788)
Wei Z et al (2022) APOBEC3B is overexpressed in cervical cancer and promotes the proliferation of cervical cancer cells through apoptosis, cell cycle, and p53 pathway. Front Oncol 12:864889. (PMID: 36249021955665110.3389/fonc.2022.864889)
Yamanaka S (2008) Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci 363(1500):2079–2087. (PMID: 18375377261018010.1098/rstb.2008.2261)
Yang L et al (2022) Integrative dissection of novel lactate metabolism-related signature in the tumor immune microenvironment and prognostic prediction in breast cancer. Front Oncol. https://doi.org/10.3389/fonc.2022.874731. (PMID: 10.3389/fonc.2022.874731369362749837830)
Yi L et al (2020) Comprehensive analysis of the PD-L1 and immune infiltrates of m(6)A RNA methylation regulators in head and neck squamous cell carcinoma. Mol Ther Nucleic Acids 21:299–314. (PMID: 32622331733250610.1016/j.omtn.2020.06.001)
Yu G et al (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. (PMID: 22455463333937910.1089/omi.2011.0118)
Yuan SF et al (2023) IL-1RA promotes oral squamous cell carcinoma malignancy through mitochondrial metabolism-mediated EGFR/JNK/SOX2 pathway. J Transl Med 21(1):473. (PMID: 374611111035119410.1186/s12967-023-04343-9)
Zeng C et al (2023) Dissection of transcriptomic and epigenetic heterogeneity of grade 4 gliomas: implications for prognosis. Acta Neuropathol Commun 11(1):133. (PMID: 375808171042620110.1186/s40478-023-01619-5)
Zhang Z et al (2020) Construction of a novel gene-based model for prognosis prediction of clear cell renal cell carcinoma. Cancer Cell Int 20:27. (PMID: 32002016698603610.1186/s12935-020-1113-6)
Zhang F et al (2021) The antitriple negative breast cancer efficacy of spatholobus suberectus Dunn on ROS-induced noncanonical inflammasome pyroptotic pathway. Oxid Med Cell Longev 2021:1–17. (PMID: 10.1155/2021/5187569)
Zhang T et al (2023a) Identification of cervical cancer stem cells using single-cell transcriptomes of normal cervix, cervical premalignant lesions, and cervical cancer. EBioMedicine 92:104612. (PMID: 372247711027792610.1016/j.ebiom.2023.104612)
Zhang X et al (2023b) Compartmentalized activities of HMGCS1 control cervical cancer radiosensitivity. Cell Signal 101:110507. (PMID: 3632811710.1016/j.cellsig.2022.110507)
Zhao MY et al (2022) Propofol augments paclitaxel-induced cervical cancer cell ferroptosis in vitro. Front Pharmacol 13:816432. (PMID: 35517791906525710.3389/fphar.2022.816432) - Contributed Indexing: Keywords: Bioinformatics; Cervical Cancer; Ferroptosis; SOX2 Gene
- Accession Number: 0 (SOXB1 Transcription Factors)
0 (SOX2 protein, human)
0 (Biomarkers, Tumor) - Publication Date: Date Created: 20241123 Date Completed: 20241123 Latest Revision: 20241228
- Publication Date: 20241228
- Accession Number: PMC11585523
- Accession Number: 10.1007/s00432-024-05973-2
- Accession Number: 39580372
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.