Menu
×
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 6 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 6 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Sex and estradiol effects in the rodent dorsal striatum.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Lewitus VJ;Lewitus VJ; Kim J; Kim J; Blackwell KT; Blackwell KT
- Source:
The European journal of neuroscience [Eur J Neurosci] 2024 Dec; Vol. 60 (12), pp. 6962-6986. Date of Electronic Publication: 2024 Nov 21.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
- Publication Information: Publication:
: Oxford : Wiley-Blackwell
Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989- - Subject Terms:
- Abstract: 17β-Estradiol (E2) is a sex hormone that acts on many brain regions to produce changes in neuronal activity and learning. A key brain region sensitive to E2 is the dorsal striatum (also called caudate-putamen), which controls motor behaviour, goal-directed learning and habit learning. In adult rodents, oestrogen receptors (ERs) in the dorsal striatum are localized to the plasma membrane and include ERα, ERβ and G protein-coupled ER (GPER). E2, either naturally produced or exogenously applied, may influence neuronal excitability, basal synaptic transmission and long-term synaptic potentiation. These effects may be due to direct action on signalling pathways or may be due to changes in dopamine availability. In particular, estradiol influences dopamine release, dopamine receptor expression and dopamine transporter expression. We review the cellular effects that E2 has in the dorsal striatum, distinguishing between exogenously applied E2 and the oestrous cycle, as well as its influence on dorsal striatal-dependent motor and learning behaviour.
(© 2024 The Author(s). European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.) - References: Acramel, A., & Jacquot, Y. (2022). Deciphering of a putative GPER recognition domain in ERα and ERα36. Frontiers in Endocrinology (Lausanne), 13, 1–4. https://doi.org/10.3389/fendo.2022.943343.
Ajayi, A. F., & Akhigbe, R. E. (2020). Staging of the estrous cycle and induction of estrus in experimental rodents: An update. Fertility Research and Practice, 6, 5. https://doi.org/10.1186/s40738-020-00074-3.
Almey, A., Filardo, E. J., Milner, T. A., & Brake, W. G. (2012). Estrogen receptors are found in glia and at extranuclear neuronal sites in the dorsal striatum of female rats: Evidence for cholinergic but not dopaminergic colocalization. Endocrinology, 153, 5373–5383. https://doi.org/10.1210/en.2012-1458.
Almey, A., Milner, T. A., & Brake, W. G. (2016). Estrogen receptor α and G‐protein coupled estrogen receptor 1 are localized to GABAergic neurons in the dorsal striatum. Neuroscience Letters, 622, 118–123. https://doi.org/10.1016/j.neulet.2016.04.023.
Almey, A., Milner, T. A., & Brake, W. G. (2022). Estrogen receptors observed at extranuclear neuronal sites and in glia in the nucleus accumbens core and shell of the female rat: Evidence for localization to catecholaminergic and GABAergic neurons. The Journal of Comparative Neurology, 530, 2056–2072. https://doi.org/10.1002/cne.25320.
Attali, G., Weizman, A., Gil‐Ad, I., & Rehavi, M. (1997). Opposite modulatory effects of ovarian hormones on rat brain dopamine and serotonin transporters. Brain Research, 756, 153–159.
Bakhti‐Suroosh, A., Towers, E. B., & Lynch, W. J. (2021). A buprenorphine‐validated rat model of opioid use disorder optimized to study sex differences in vulnerability to relapse. Psychopharmacology, 238, 1029–1046. https://doi.org/10.1007/s00213-020-05750-2.
Bazzett, T. J., & Becker, J. B. (1994). Sex differences in the rapid and acute effects of estrogen on striatal D₂ dopamine receptor binding. Brain Research, 637, 163–172. https://doi.org/10.1016/0006-8993(94)91229-7.
Beatty, W. W., & Holzer, G. A. (1978). Sex differences in stereotyped behavior in the rat. Pharmacology, Biochemistry, and Behavior, 9, 777–783. https://doi.org/10.1016/0091-3057(78)90356-8.
Becker, J. B. (2016). Sex differences in addiction. Dialogues in Clinical Neuroscience, 18, 395–402. https://doi.org/10.31887/DCNS.2016.18.4/jbecker.
Becker, J. B., Beer, M. E., & Robinson, T. E. (1984). Striatal dopamine release stimulated by amphetamine or potassium: Influence of ovarian hormones and the light‐dark cycle. Brain Research, 311, 157–160. https://doi.org/10.1016/0006-8993(84)91410-0.
Becker, J. B., & Cha, J. H. (1989). Estrous cycle‐dependent variation in amphetamine‐induced behaviors and striatal dopamine release assessed with microdialysis. Behavioural Brain Research, 35, 117–125. https://doi.org/10.1016/S0166-4328(89)80112-3.
Becker, J. B., & Ramirez, V. D. (1981). Sex differences in the amphetamine stimulated release of catecholamines from rat striatal tissue in vitro. Brain Research, 204, 361–372. https://doi.org/10.1016/0006-8993(81)90595-3.
Becker, J. B., & Rudick, C. N. (1999). Rapid effects of estrogen or progesterone on the amphetamine‐induced increase in striatal dopamine are enhanced by estrogen priming: A microdialysis study. Pharmacology, Biochemistry, and Behavior, 64, 53–57. https://doi.org/10.1016/S0091-3057(99)00091-X.
Becker, J. B., Snyder, P. J., Miller, M. M., Westgate, S. A., & Jenuwine, M. J. (1987). The influence of estrous cycle and intrastriatal estradiol on sensorimotor performance in the female rat. Pharmacology, Biochemistry, and Behavior, 27, 53–59. https://doi.org/10.1016/0091-3057(87)90476-X.
Beeson, A. L. S., & Meitzen, J. (2023). Estrous cycle impacts on dendritic spine plasticity in rat nucleus accumbens core and shell and caudate–putamen. The Journal of Comparative Neurology, 531, 759–774. https://doi.org/10.1002/cne.25460.
Bertholomey, M. L., Nagarajan, V., & Torregrossa, M. M. (2016). Sex differences in reinstatement of alcohol seeking in response to cues and yohimbine in rats with and without a history of adolescent corticosterone exposure. Psychopharmacology, 233, 2277–2287. https://doi.org/10.1007/s00213-016-4278-x.
Bixo, M., Bäckström, T., Winblad, B., Selstam, G., & Andersson, A. (1986). Comparison between pre‐ and postovulatory distributions of oestradiol and progesterone in the brain of the PMSG‐treated rat. Acta Physiologica Scandinavica, 128, 241–246. https://doi.org/10.1111/j.1748-1716.1986.tb07972.x.
Bossé, R., Rivest, R., & Di Paolo, T. (1997). Ovariectomy and estradiol treatment affect the dopamine transporter and its gene expression in the rat brain. Molecular Brain Research, 46, 343–346. https://doi.org/10.1016/S0169-328X(97)00082-X.
Boulware, M. I., Weick, J. P., Becklund, B. R., Kuo, S. P., Groth, R. D., & Mermelstein, P. G. (2005). Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element‐binding protein. The Journal of Neuroscience, 25, 5066–5078. https://doi.org/10.1523/JNEUROSCI.1427-05.2005.
Bourque, M., Morissette, M., & Di Paolo, T. (2015). Neuroprotection in parkinsonian‐treated mice via estrogen receptor α activation requires G protein‐coupled estrogen receptor 1. Neuropharmacology, 95, 343–352. https://doi.org/10.1016/j.neuropharm.2015.04.006.
Brailoiu, E., Dun, S. L., Brailoiu, G. C., Mizuo, K., Sklar, L. A., Oprea, T. I., Prossnitz, E. R., & Dun, N. J. (2007). Distribution and characterization of estrogen receptor G protein‐coupled receptor 30 in the rat central nervous system. The Journal of Endocrinology, 193, 311–321. https://doi.org/10.1677/JOE-07-0017.
Braun, A. A., Amos‐Kroohs, R. M., Gutierez, A., Lundgren, K. H., Seroogy, K. B., Skelton, M. R., Vorhees, C. V., & Williams, M. T. (2015). Dopamine depletion in either the dorsomedial or dorsolateral striatum impairs egocentric Cincinnati water maze performance while sparing allocentric Morris water maze learning. Neurobiology of Learning and Memory, 118, 55–63. https://doi.org/10.1016/j.nlm.2014.10.009.
Brundage, J. N., Mason, C. P., Wadsworth, H. A., Finuf, C. S., Nelson, J. J., Ronström, P. J. W., Jones, S. R., Siciliano, C. A., Steffensen, S. C., & Yorgason, J. T. (2022). Regional and sex differences in spontaneous striatal dopamine transmission. Journal of Neurochemistry, 160, 598–612. https://doi.org/10.1111/jnc.15473.
Budygin, E. A., Oleson, E. B., Lee, Y. B., Blume, L. C., Bruno, M. J., Howlett, A. C., Thompson, A. C., & Bass, C. E. (2017). Acute depletion of D2 receptors from the rat substantia nigra alters dopamine kinetics in the dorsal striatum and drug responsivity. Frontiers in Behavioral Neuroscience, 10, 248. https://doi.org/10.3389/fnbeh.2016.00248.
Burger, N. (2002). Androgen production in women. Fertility and Sterility, 77, S3–S5. https://doi.org/10.1016/S0015-0282(02)02985-0.
Bustamante‐Barrientos, F. A., Méndez‐Ruette, M., Ortloff, A., Luz‐Crawford, P., Rivera, F. J., Figueroa, C. D., Molina, L., & Bátiz, L. F. (2021). The impact of estrogen and estrogen‐like molecules in neurogenesis and neurodegeneration: Beneficial or harmful? Frontiers in Cellular Neuroscience, 15, 636176. https://doi.org/10.3389/fncel.2021.636176.
Butcher, R. L., Collins, W. E., & Fugo, N. W. (1974). Plasma concentration of LH, FSH, prolactin, progesterone and estradiol‐17beta throughout the 4‐day estrous cycle of the rat. Endocrinology, 94, 1704–1708. https://doi.org/10.1210/endo-94-6-1704.
Calés, J. M., Sánchez‐Santed, F., Pérez‐Laso, C., Rodriguez‐Zafra, M., Segovia, S., & Guillamón, A. (1992). Effects of early postnatal sex steroids on acquisition and extinction of a continuously reinforced lever‐pressing response. Brain Research Bulletin, 28, 937–941. https://doi.org/10.1016/0361-9230(92)90216-K.
Cates, B. E., Dillard, B. M., Foster, B. R., Patterson, S. V., Spivey, T. P., Combs, E. B., & Bowen, R. S. (2018). Effects of varying doses of estrogen and caudal pressure on wheel running in orchidectomized male mice. Physiological Reports, 6, 6. https://doi.org/10.14814/phy2.13730.
Chesler, E. J., & Juraska, J. M. (2000). Acute administration of estrogen and progesterone impairs the acquisition of the spatial Morris water maze in ovariectomized rats. Hormones and Behavior, 38, 234–242. https://doi.org/10.1006/hbeh.2000.1626.
Chiodo, L. A., & Caggiula, A. R. (1983). Substantia nigra dopamine neurons: Alterations in basal discharge rates and autoreceptor sensitivity induced by estrogen. Neuropharmacology, 22, 593–599. https://doi.org/10.1016/0028-3908(83)90150-8.
Chiodo, L. A., Caggiula, A. R., & Saller, C. F. (1981). Estrogen potentiates the stereotypy induced by dopamine agonists in the rat. Life Sciences, 28, 827–835. https://doi.org/10.1016/0024-3205(81)90167-3.
Clopton, J., & Gordon, J. H. (1986). In vivo effects of estrogen and 2‐hydroxyestradiol on D‐2 dopamine receptor agonist affinity states in rat striatum. Journal of Neural Transmission, 66, 13–20. https://doi.org/10.1007/BF01262954.
Contini, A., Sanna, F., Maccioni, P., Colombo, G., & Argiolas, A. (2018). Comparison between male and female rats in a model of self‐administration of a chocolate‐ flavored beverage: Behavioral and neurochemical studies. Behavioural Brain Research, 344, 28–41. https://doi.org/10.1016/j.bbr.2018.02.004.
Corbit, L. H., Nie, H., & Janak, P. H. (2012). Habitual alcohol seeking: Time course and the contribution of subregions of the dorsal striatum. Biological Psychiatry, 72, 389–395. https://doi.org/10.1016/j.biopsych.2012.02.024.
Daniel, J. M., & Lee, C. D. (2004). Estrogen replacement in ovariectomized rats affects strategy selection in the Morris water maze. Neurobiology of Learning and Memory, 82, 142–149. https://doi.org/10.1016/j.nlm.2004.06.001.
Davis, D. M., Jacobson, T. K., Aliakbari, S., & Mizumori, S. J. Y. (2005). Differential effects of estrogen on hippocampal‐ and striatal‐dependent learning. Neurobiology of Learning and Memory, 84, 132–137. https://doi.org/10.1016/j.nlm.2005.06.004.
del Pino, J., Moyano, P., Ruiz, M., Anadón, M. J., Díaz, M. J., García, J. M., Labajo‐González, E., & Frejo, M. T. (2017). Amitraz changes NE, DA and 5‐HT biosynthesis and metabolism mediated by alterations in estradiol content in CNS of male rats. Chemosphere, 181, 518–529. https://doi.org/10.1016/j.chemosphere.2017.04.113.
Di Paolo, T., Daigle, M., & Labrie, F. (1984). Effect of estradiol and haloperidol on hypophysectomized rat brain dopamine receptors. Psychoneuroendocrinology, 9, 399–404. https://doi.org/10.1016/0306-4530(84)90047-7.
Di Paolo, T., Falardeau, P., & Morissette, M. (1988). Striatal D‐2 dopamine agonist binding sites fluctuate during the rat estrous cycle. Life Sciences, 43, 665–672. https://doi.org/10.1016/0024-3205(88)90137-3.
Di Paolo, T., Poyet, P., & Labrie, F. (1981). Effect of chronic estradiol and haloperidol treatment on striatal dopamine receptors. The European Journal of Neuroscience, 73, 105–106. https://doi.org/10.1016/0014-2999(81)90153-9.
Di Paolo, T., Poyet, P., & Labrie, F. (1982). Prolactin and estradiol increase striatal dopamine receptor density in intact, castrated and hypophysectomized rats. Progress in Neuro‐Psychopharmacology & Biological Psychiatry, 6, 377–382. https://doi.org/10.1016/S0278-5846(82)80111-5.
Dickinson, S. D., Sabeti, J., Larson, G. A., Giardina, K., Rubinstein, M., Kelly, M. A., Grandy, D. K., Low, M. J., Gerhardt, G. A., & Zahniser, N. R. (1999). Dopamine D2 receptor‐deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. Journal of Neurochemistry, 72, 148–156.
Dluzen, D. E., & McDermott, J. L. (2008). Sex differences in dopamine‐ and vesicular monoamine‐transporter functions: Implications for methamphetamine use and neurotoxicity. Annals of the new York Academy of Sciences, 1139, 140–150. https://doi.org/10.1196/annals.1432.010.
Dluzen, D. E., & Ramirez, V. D. (1984). Bimodal effect of progesterone on in vitro dopamine function of the rat corpus striatum. Neuroendocrinology, 39, 149–155. https://doi.org/10.1159/000123971.
Dluzen, D. E., & Ramirez, V. D. (1989). Progesterone enhances L‐DOPA‐stimulated dopamine release from the caudate nucleus of freely behaving ovariectomized‐estrogen‐primed rats. Brain Research, 494, 122–128. https://doi.org/10.1016/0006-8993(89)90150-9.
Dluzen, D. E., & Ramirez, V. D. (1990). In vitro progesterone modulates amphetamine‐stimulated dopamine release from the corpus striatum of castrated male rats treated with estrogen. Neuroendocrinology, 52, 517–520. https://doi.org/10.1159/000125637.
Dorris, D. M., Cao, J., Willett, J. A., Hauser, C. A., & Meitzen, J. (2015). Intrinsic excitability varies by sex in prepubertal striatal medium spiny neurons. Journal of Neurophysiology, 113, 720–729. https://doi.org/10.1152/jn.00687.2014.
Enterría‐Morales, D., López‐López, I., López‐Barneo, J., & d'Anglemont de Tassigny, X. (2016). Striatal GDNF production is independent to circulating estradiol level despite pan‐neuronal activation in the female mouse. PLoS ONE, 11, e0164391. https://doi.org/10.1371/journal.pone.0164391.
Euvrard, C., Labrie, F., & Boissier, J. R. (1979). Effect of estrogen on changes in the activity of striatal cholinergic neurons induced by DA drugs. Brain Research, 169, 215–220. https://doi.org/10.1016/0006-8993(79)90392-5.
Exley, R., & Cragg, S. J. (2008). Presynaptic nicotinic receptors: A dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. British Journal of Pharmacology, 153, S283–S297. https://doi.org/10.1038/sj.bjp.0707510.
Falardeau, P., & Di Paolo, T. (1987). Regional effect of estradiol on rat caudate‐putamen dopamine receptors: Lateral‐medial differences. Neuroscience Letters, 74, 43–48. https://doi.org/10.1016/0304-3940(87)90048-6.
Ferbinteanu, J. (2020). The hippocampus and dorsolateral striatum integrate distinct types of memories through time and space, respectively. The Journal of Neuroscience, 40, 9055–9065. https://doi.org/10.1523/JNEUROSCI.1084-20.2020.
Fernández‐Ruiz, J. J., Amor, J. C., & Ramos, J. A. (1989). Time‐dependent effects of estradiol and progesterone on the number of striatal dopaminergic D2‐receptors. Brain Research, 476, 388–395. https://doi.org/10.1016/0006-8993(89)91266-3.
Ferretti, C., Blengio, M., Vigna, I., Ghi, P., & Genazzani, E. (1992). Effects of estradiol on the ontogenesis of striatal dopamine D1 and D2 receptor sites in male and female rats. Brain Research, 571, 212–217. https://doi.org/10.1016/0006-8993(92)90657-U.
Filardo, E. J., Quinn, J. A., Frackelton, A. R., & Bland, K. I. (2002). Estrogen action via the G protein‐coupled receptor, GPR30: Stimulation of adenylyl cyclase and cAMP‐mediated attenuation of the epidermal growth factor receptor‐to‐MAPK signaling axis. Molecular Endocrinology, 16, 70–84. https://doi.org/10.1210/mend.16.1.0758.
Galea, L. A. M., Frick, K. M., Hampson, E., Sohrabji, F., & Choleris, E. (2017). Why estrogens matter for behavior and brain health. Neuroscience and Biobehavioral Reviews, 76, 363–379. https://doi.org/10.1016/j.neubiorev.2016.03.024.
Galea, L. A. M., Wide, J. K., Paine, T. A., Holmes, M. M., Ormerod, B. K., & Floresco, S. B. (2001). High levels of estradiol disrupt conditioned place preference learning, stimulus response learning and reference memory but have limited effects on working memory. Behavioural Brain Research, 126, 115–126. https://doi.org/10.1016/S0166-4328(01)00255-8.
Gao, F., Ma, X., Ostmann, A. B., & Das, S. K. (2011). GPR30 activation opposes estrogen‐dependent uterine growth via inhibition of stromal ERK1/2 and estrogen receptor alpha (ERα) phosphorylation signals. General Endocrinology, 152, 1434–1447. https://doi.org/10.1210/en.2010-1368.
Garey, J., Morgan, M. A., Frohlich, J., McEwen, B. S., & Pfaff, D. W. (2001). Effects of the phytoestrogen coumestrol on locomotor and fear‐related behaviors in female mice. Hormones and Behavior, 40, 65–76. https://doi.org/10.1006/hbeh.2001.1660.
Gerdeman, G. L., Ronesi, J., & Lovinger, D. M. (2002). Postsynaptic endocannabinoid release is critical to long‐term depression in the striatum. Nature Neuroscience, 5, 446–451. https://doi.org/10.1038/nn832.
Gonzalez, I. L., Turner, C. A., Patel, P. R., Leonardo, N. B., Luma, B. D., Richie, J. M., Cai, D., Chestek, C. A., & Becker, J. B. (2024). Sex differences in dopamine release in nucleus accumbens and dorsal striatum: Effects of social housing and repeated stimulation. Journal of Neuroscience, 5, e1527232024.
Gordon, J. H., & Perry, K. O. (1983). Pre‐ and postsynaptic neurochemical alterations following estrogen‐induced striatal dopamine hypo‐ and hypersensitivity. Brain Research Bulletin, 10, 425–428. https://doi.org/10.1016/0361-9230(83)90137-5.
Gorzek, J. F., Hendrickson, K. C., Forstner, J. P., Rixen, J. L., Moran, A. L., & Lowe, D. A. (2007). Estradiol and tamoxifen reverse ovariectomy‐induced physical inactivity in mice. Medicine and Science in Sports and Exercise, 39, 248–256. https://doi.org/10.1249/01.mss.0000241649.15006.b8.
Grove‐Strawser, D., Boulware, M. I., & Mermelstein, P. G. (2010). Membrane estrogen receptors activate the metabotropic glutamate receptors mGluR5 and mGluR3 to bidirectionally regulate CREB phosphorylation in female rat striatal neurons. Neuroscience, 170, 1045–1055. https://doi.org/10.1016/j.neuroscience.2010.08.012.
Hammond, R., Nelson, D., & Gibbs, R. B. (2011). GPR30 co‐localizes with cholinergic neurons in the basal forebrain and enhances potassium‐stimulated acetylcholine release in the hippocampus. Psychoneuroendocrinology, 36, 182–192. https://doi.org/10.1016/j.psyneuen.2010.07.007.
Hart, G., Burton, T. J., & Balleine, B. W. (2024). What role does striatal dopamine play in goal‐directed action? Neuroscience, 546, 20–32. https://doi.org/10.1016/j.neuroscience.2024.03.020.
Hasbi, A., Nguyen, T., Rahal, H., Manduca, J. D., Miksys, S., Tyndale, R. F., Madras, B. K., Perreault, M. L., & George, S. R. (2020). Sex difference in dopamine D1‐D2 receptor complex expression and signaling affects depression‐ and anxiety‐like behaviors. Biology of Sex Differences, 11, 8. https://doi.org/10.1186/s13293-020-00285-9.
Hawes, S. L., Gillani, F., Evans, R. C., Benkert, E. A., & Blackwell, K. T. (2013). Sensitivity to theta‐burst timing permits LTP in dorsal striatal adult brain slice. Journal of Neurophysiology, 110, 2027–2036. https://doi.org/10.1152/jn.00115.2013.
Hernandez‐Avila, C. A., Rounsaville, B. J., & Kranzler, H. R. (2004). Opioid‐, cannabis‐ and alcohol‐dependent women show more rapid progression to substance abuse treatment. Drug and Alcohol Dependence, 74, 265–272. https://doi.org/10.1016/j.drugalcdep.2004.02.001.
Hruska, R. E. (1986). Elevation of striatal dopamine receptors by estrogen: Dose and time studies. Journal of Neurochemistry, 47, 1908–1915. https://doi.org/10.1111/j.1471-4159.1986.tb13106.x.
Hruska, R. E., Ludmer, L. M., Pitman, K. T., Ryck, M. D. E., & Silbergeld, E. K. (1982). Effects of estrogen on striatal dopamine receptor function in male and female rats. Pharmacology, Biochemistry, and Behavior, 16, 285–291. https://doi.org/10.1016/0091-3057(82)90162-9.
Hruska, R. E., Ludmer, L. M., & Silbergeld, E. K. (1980). Characterization of the striatal dopamine receptor supersensitivity produced by estrogen treatment of male rats. Neuropharmacology, 19, 923–926. https://doi.org/10.1016/0028-3908(80)90095-7.
Hruska, R. E., & Nowak, M. W. (1988). Estrogen treatment increases the density of D1 dopamine receptors in the rat striatum. Brain Research, 442, 349–350. https://doi.org/10.1016/0006-8993(88)91523-5.
Hruska, R. E., & Silbergeld, E. K. (1980). Estrogen treatment enhances dopamine receptor sensitivity in the rat striatum. European Journal of Pharmacology, 61, 397–400. https://doi.org/10.1016/0014-2999(80)90081-3.
Hu, M., Watson, C. J., Kennedy, R. T., & Becker, J. B. (2006). Estradiol attenuates the K+‐induced increase in extracellular GABA in rat striatum. Synapse, 59, 122–124. https://doi.org/10.1002/syn.20221.
Hussain, D., Cossette, M. P., & Brake, W. G. (2016). High oestradiol replacement reverses response memory bias in ovariectomised female rats regardless of dopamine levels in the dorsal striatum. Journal of Neuroendocrinology, 28, 1–10. https://doi.org/10.1111/jne.12375.
Inagaki, T., Gautreaux, C., & Luine, V. (2010). Acute estrogen treatment facilitates recognition memory consolidation and alters monoamine levels in memory‐related brain areas. Hormones and Behavior, 58, 415–426. https://doi.org/10.1016/j.yhbeh.2010.05.013.
Ji, J., McDermott, J. L., & Dluzen, D. E. (2007). Sex differences in K+‐evoked striatal dopamine output from superfused striatal tissue fragments of reserpine‐treated CD‐1 mice. Journal of Neuroendocrinology, 19, 725–731. https://doi.org/10.1111/j.1365-2826.2007.01581.x.
Jin, X., & Steinbach, J. H. (2011). A portable site: A binding element for 17β‐estradiol can be placed on any subunit of a nicotinic α4β2 receptor. The Journal of Neuroscience, 31, 5045–5054. https://doi.org/10.1523/JNEUROSCI.4802-10.2011.
Jin, X., & Steinbach, J. H. (2015). Potentiation of neuronal nicotinic receptors by 17β‐estradiol: Roles of the carboxy‐terminal and the amino‐terminal extracellular domains. PLoS ONE, 10, e0144631. https://doi.org/10.1371/journal.pone.0144631.
Johnson, A. R., Thibeault, K. C., Lopez, A. J., Peck, E. G., Sands, L. P., Sanders, C. M., Kutlu, M. G., & Calipari, E. S. (2019). Cues play a critical role in estrous cycle‐dependent enhancement of cocaine reinforcement. Neuropsychopharmacology, 44, 1189–1197. https://doi.org/10.1038/s41386-019-0320-0.
Johnson, C. S., & Mermelstein, P. G. (2023). Chapter two ‐ the interaction of membrane estradiol receptors and metabotropic glutamate receptors in adaptive and maladaptive estradiol‐mediated motivated behaviors in females. International Review of Neurobiology, 168, 33–91. https://doi.org/10.1016/bs.irn.2022.11.001.
Koranda, J. L., Cone, J. J., McGehee, D. S., Roitman, M. F., Beeler, J. A., & Zhuang, X. (2014). Nicotinic receptors regulate the dynamic range of dopamine release in vivo. Journal of Neurophysiology, 111, 103–111. https://doi.org/10.1152/jn.00269.2013.
Korol, D. L., & Kolo, L. L. (2002). Estrogen‐induced changes in place and response learning in young adult female rats. Behavioral Neuroscience, 116, 411–420. https://doi.org/10.1037/0735-7044.116.3.411.
Korol, D. L., Malin, E. L., Borden, K. A., Busby, R. A., & Couper‐Leo, J. (2004). Shifts in preferred learning strategy across the estrous cycle in female rats. Hormones and Behavior, 45, 330–338. https://doi.org/10.1016/j.yhbeh.2004.01.005.
Korol, D. L., & Pisani, S. L. (2015). Estrogens and cognition: Friends or foes? An evaluation of the opposing effects of estrogens on learning and memory. Hormones and Behavior, 74, 105–115. https://doi.org/10.1016/j.yhbeh.2015.06.017.
Kövesdi, E., Udvarácz, I., Kecskés, A., Szőcs, S., Farkas, S., Faludi, P., Jánosi, T. Z., Ábrahám, I. M., & Kovács, G. (2023). 17β‐estradiol does not have a direct effect on the function of striatal cholinergic interneurons in adult mice in vitro. Frontiers in Endocrinology (Lausanne), 13, 993552. https://doi.org/10.3389/fendo.2022.993552.
Kreitzer, A. C., & Malenka, R. C. (2005). Dopamine modulation of state‐dependent endocannabinoid release and long‐term depression in the striatum. The Journal of Neuroscience, 25, 10537–10545. https://doi.org/10.1523/JNEUROSCI.2959-05.2005.
Krentzel, A. A., Barrett, L. R., & Meitzen, J. (2019). Estradiol rapidly modulates excitatory synapse properties in a sex‐ and region‐specific manner in rat nucleus accumbens core and caudate‐putamen. Journal of Neurophysiology, 122, 1213–1225. https://doi.org/10.1152/jn.00264.2019.
Krentzel, A. A., Willett, J. A., Johnson, A. G., & Meitzen, J. (2021). Estrogen receptor alpha, G‐protein coupled estrogen receptor 1, and aromatase: Developmental, sex, and region‐specific differences across the rat caudate–putamen, nucleus accumbens core and shell. The Journal of Comparative Neurology, 529, 786–801. https://doi.org/10.1002/cne.24978.
Küppers, E., & Beyer, C. (1999). Expression of estrogen receptor‐α and β mRNA in the developing and adult mouse striatum. Neuroscience Letters, 276, 95–98. https://doi.org/10.1016/S0304-3940(99)00815-0.
Lacasse, J. M., Patel, S., Bailey, A., Peronace, V., & Brake, W. G. (2022). Progesterone rapidly alters the use of place and response memory during spatial navigation in female rats. Hormones and Behavior, 140, 105137. https://doi.org/10.1016/j.yhbeh.2022.105137.
Lammers, C. H., D'Souza, U. M., Qin, Z.‐H., Lee, S.‐H., Yajima, S., & Mouradian, M. M. (1999). Regulation of striatal dopamine receptors by estrogen. Synapse, 34, 222–227. https://doi.org/10.1002/(SICI)1098-2396(19991201)34:3<222::AID-SYN6>3.0.CO;2-J.
LaRese, T. P., Rheaume, B. A., Abraham, R., Eipper, B. A., & Mains, R. E. (2019). Sex‐specific gene expression in the mouse nucleus accumbens before and after cocaine exposure. Journal of the Endocrine Society, 3, 468–487. https://doi.org/10.1210/js.2018-00313.
Le Saux, M., & Di Paolo, T. (2006). Influence of oestrogenic compounds on monoamine transporters in rat striatum. Journal of Neuroendocrinology, 18, 25–32. https://doi.org/10.1111/j.1365-2826.2005.01380.x.
Le Saux, M., Morissette, M., & Di Paolo, T. (2006). ERβ mediates the estradiol increase of D2 receptors in rat striatum and nucleus accumbens. Neuropharmacology, 50, 451–457. https://doi.org/10.1016/j.neuropharm.2005.10.004.
Lévesque, D., & Di Paolo, T. (1988). Rapid conversion of high into low striatal D2‐dopamine receptor agonist binding states after an acute physiological dose of 17β‐estradiol. Neuroscience Letters, 88, 113–118. https://doi.org/10.1016/0304-3940(88)90324-2.
Lévesque, D., & Di Paolo, T. (1989). Chronic estradiol treatment increases ovariectomized rat striatal D‐1 dopamine receptors. Life Sciences, 45, 1813–1820. https://doi.org/10.1016/0024-3205(89)90522-5.
Lévesque, D., & Di Paolo, T. (1990). Effect of the rat estrous cycle at ovariectomy on striatal D‐1 dopamine receptors. Brain Research Bulletin, 24, 281–284. https://doi.org/10.1016/0361-9230(90)90216-M.
Lewitus, V. J., & Blackwell, K. T. (2023). Estradiol receptors inhibit long‐term potentiation in the dorsomedial striatum. eNeuro, 10, 1–14.
Lightfoot, J. T. (2008). Sex hormones' regulation of rodent physical activity: A review. International Journal of Biological Sciences, 4, 126–132. https://doi.org/10.7150/ijbs.4.126.
Lipatova, O., Wiener, N., Andrews, K., Kirshenbaum, A. P., Green, J. T., & Toufexis, D. J. (2016). 17β‐estradiol replacement in ovariectomized female rats slows set 1 dorsolateral striatial‐dependent learning and enhances learning of set 2 in an extradimensional set‐shifting paradigm. Behavioral Neuroscience, 130, 44–49. https://doi.org/10.1037/bne0000119.
Lipton, D. M., Gonzales, B. J., & Citri, A. (2019). Dorsal striatal circuits for habits, compulsions and addictions. Frontiers in Systems Neuroscience, 13, 28. https://doi.org/10.3389/fnsys.2019.00028.
Livingstone, P. D., & Wonnacott, S. (2009). Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochemical Pharmacology, 78, 744–755. https://doi.org/10.1016/j.bcp.2009.06.004.
Lopes, E. F., Roberts, B. M., Siddorn, R. E., Clements, M. A., & Cragg, S. J. (2019). Inhibition of nigrostriatal dopamine release by striatal GABAA and GABAB receptors. The Journal of Neuroscience, 39, 1058–1065. https://doi.org/10.1523/JNEUROSCI.2028-18.2018.
Martins, D. B., Mazzanti, C. M., França, R. T., Pagnoncelli, M., Costa, M. M., de Souza, E. M., Gonçalves, J., Spanevello, R., Schmatz, R., da Costa, P., Mazzanti, A., Beckmann, D. V., Cecim, M. d. S., Schetinger, M. R., & Lopes, S. T. D. A. (2012). 17‐β estradiol in the acetylcholinesterase activity and lipid peroxidation in the brain and blood of ovariectomized adult and middle‐aged rats. Life Sciences, 90, 351–359. https://doi.org/10.1016/j.lfs.2011.12.006.
McArthur, S., Murray, H. E., Dhankot, A., Dexter, D. T., & Gillies, G. E. (2007). Striatal susceptibility to a dopaminergic neurotoxin is independent of sex hormone effects on cell survival and DAT expression but is exacerbated by central aromatase inhibition. Journal of Neurochemistry, 100, 678–692. https://doi.org/10.1111/j.1471-4159.2006.04226.x.
McCall, W. V., Ellinwood, E. H., Nishita, J. K., & Lee, T. H. (1988). Clomiphene blocks the effect of intravenous estradiol on the firing rate of rat nigral dopamine neurons. Research Communications in Chemical Pathology and Pharmacology, 60, 141–144.
McDermott, J. L. (1993). Effects of estrogen upon dopamine release from the corpus striatum of young and aged female rats. Brain Research, 606, 118–125. https://doi.org/10.1016/0006-8993(93)91578-G.
McDermott, J. L., Liu, B., & Dluzen, D. E. (1994). Sex differences and effects of estrogen on dopamine and DOPAC release from the striatum of male and female CD‐1 mice. Experimental Neurology, 125, 306–311. https://doi.org/10.1006/exnr.1994.1034.
McDonald, R. J., & White, N. M. (2013). A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 127, 835–853. https://doi.org/10.1037/a0034883.
Meiergerd, S. M., Patterson, T. A., & Schenk, J. O. (1993). D2 receptors may modulate the function of the striatal transporter for dopamine: Kinetic evidence from studies in vitro and in vivo. Journal of Neurochemistry, 61, 764–767. https://doi.org/10.1111/j.1471-4159.1993.tb02185.x.
Mermelstein, P. G., & Becker, J. B. (1995). Increased extracellular dopamine in the nucleus accumbens and striatum of the female rat during paced copulatory behavior. Behavioral Neuroscience, 109, 354–365. https://doi.org/10.1037/0735-7044.109.2.354.
Mermelstein, P. G., Becker, J. B., & Surmeier, D. J. (1996). Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. The Journal of Neuroscience, 16, 595–604. https://doi.org/10.1523/JNEUROSCI.16-02-00595.1996.
Meyer, M. E., & Van Hartesveldt, C. (1993). Differential effects of intrastriatal estradiol on the dorsal immobility response in male rats. Pharmacology, Biochemistry, and Behavior, 43, 303–306.
Miller, C. K., & Meitzen, J. (2023). No detectable changes in anxiety‐related and locomotor behaviors in adult ovariectomized female rats exposed to estradiol, the ERβ agonist DPN or the ERα agonist PPT. Hormones and Behavior, 152, 105363. https://doi.org/10.1016/j.yhbeh.2023.105363.
Morissette, M., Biron, D., & Di Paolo, T. (1990). Effect of estradiol and progesterone on rat striatal dopamine uptake sites. Brain Research Bulletin, 25, 419–422. https://doi.org/10.1016/0361-9230(90)90231-N.
Morissette, M., & Di Paolo, T. (1993a). Sex and estrous cycle variations of rat striatal dopamine uptake sites. Neuroendocrinology, 58, 16–22. https://doi.org/10.1159/000126507.
Morissette, M., & Di Paolo, T. (1993b). Effect of chronic estradiol and progesterone treatments of ovariectomized rats on brain dopamine uptake sites. Journal of Neurochemistry, 60, 1876–1883. https://doi.org/10.1111/j.1471-4159.1993.tb13415.x.
Nieto, S. J., & Kosten, T. A. (2017). Female Sprague‐Dawley rats display greater appetitive and consummatory responses to alcohol. Behavioural Brain Research, 327, 155–161. https://doi.org/10.1016/j.bbr.2017.03.037.
Ogawa, S., Chan, J., Gustafsson, J. Å., Korach, K. S., & Pfaff, D. W. (2003). Estrogen increases locomotor activity in mice through estrogen receptor α: Specificity for the type of activity. Endocrinology, 144, 230–239. https://doi.org/10.1210/en.2002-220519.
Ohtani, H., Nomoto, M., & Douchi, T. (2001). Chronic estrogen treatment replaces striatal dopaminergic function in ovariectomized rats. Brain Research, 900, 163–168. https://doi.org/10.1016/S0006-8993(01)02276-4.
Olson, K. L., Ingebretson, A. E., Vogiatzoglou, E., Mermelstein, P. G., & Lemos, J. C. (2024). Cholinergic interneurons in the nucleus accumbens are a site of cellular convergence for corticotropin‐releasing factor and estrogen regulation in male and female mice. European Journal of Neuroscience, 60, 4937–4953. https://doi.org/10.1111/ejn.16477.
Packard, M. G., Hirsh, R., & White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory systems. The Journal of Neuroscience, 9, 1465–1472. https://doi.org/10.1523/JNEUROSCI.09-05-01465.1989.
Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 65–72. https://doi.org/10.1006/nlme.1996.0007.
Palencia, C. A., & Ragozzino, M. E. (2005). The contribution of NMDA receptors in the dorsolateral striatum to egocentric response learning. Behavioral Neuroscience, 119, 953–960. https://doi.org/10.1037/0735-7044.119.4.953.
Pardridge, W. M., & Mietus, L. J. (1979). Transport of steroid hormones through the rat blood‐brain barrier: Primary role of albumin‐bound hormone. The Journal of Clinical Investigation, 64, 145–154. https://doi.org/10.1172/JCI109433.
Pasqualini, C., Olivier, V., Guibert, B., Frain, O., & Leviel, V. (1995). Acute stimulatory effect of estradiol on striatal dopamine synthesis. Journal of Neurochemistry, 65, 1651–1657. https://doi.org/10.1046/j.1471-4159.1995.65041651.x.
Patel, J. C., Sherpa, A. D., Melani, R., Witkovsky, P., Wiseman, M. R., O'Neill, B., Aoki, C., Tritsch, N. X., & Rice, M. E. (2024). GABA co‐released from striatal dopamine axons dampens phasic dopamine release through autoregulatory GABAA receptors. Cell Reports, 43, 113834. https://doi.org/10.1016/j.celrep.2024.113834.
Pawlak, V., & Kerr, J. N. D. (2008). Dopamine receptor activation is required for corticostriatal spike‐timing‐dependent plasticity. The Journal of Neuroscience, 28, 2435–2446. https://doi.org/10.1523/JNEUROSCI.4402-07.2008.
Peterson, B. M., Mermelstein, P. G., & Meisel, R. L. (2015). Estradiol mediates dendritic spine plasticity in the nucleus accumbens core through activation of mGluR5. Brain Structure & Function, 220, 2415–2422. https://doi.org/10.1007/s00429-014-0794-9.
Piazza, N. J., Vrbka, J. L., & Yeager, R. D. (1989). Telescoping of alcoholism in women alcoholics. Substance use & Misuse, 24, 19–28.
Piccardi, P., Bernardi, F., Rossetti, Z., & Corsini, G. (1983). Effect of estrogens on dopamine autoreceptors in male rats. European Journal of Pharmacology, 91(1), 1–9. https://doi.org/10.1016/0014-2999(83)90355-2.
Proaño, S. B., Krentzel, A. A., & Meitzen, J. (2020). Differential and synergistic roles of 17β‐estradiol and progesterone in modulating adult female rat nucleus accumbens core medium spiny neuron electrophysiology. Journal of Neurophysiology, 123, 2390–2405. https://doi.org/10.1152/jn.00157.2020.
Proaño, S. B., & Meitzen, J. (2020). Estradiol decreases medium spiny neuron excitability in female rat nucleus accumbens core. Journal of Neurophysiology, 123, 2465–2475. https://doi.org/10.1152/jn.00210.2020.
Proaño, S. B., Miller, C. K., Krentzel, A. A., Dorris, D. M., & Meitzen, J. (2024). Sex steroid hormones, the estrous cycle, and rapid modulation of glutamatergic synapse properties in the striatal brain regions with a focus on 17β‐estradiol and the nucleus accumbens. Steroids, 201, 109344. https://doi.org/10.1016/j.steroids.2023.109344.
Proaño, S. B., Morris, H. J., Kunz, L. M., Dorris, D. M., & Meitzen, J. (2018). Estrous cycle‐induced sex differences in medium spiny neuron excitatory synaptic transmission and intrinsic excitability in adult rat nucleus accumbens core. Journal of Neurophysiology, 120(3), 1356–1373. https://doi.org/10.1152/jn.00263.2018.
Quigley, J. A., & Becker, J. B. (2021). Activation of G‐protein coupled estradiol receptor 1 in the dorsolateral striatum attenuates preference for cocaine and saccharin in male but not female rats. Hormones and Behavior, 130, 104949. https://doi.org/10.1016/j.yhbeh.2021.104949.
Quigley, J. A., Logsdon, M. K., Turner, C. A., Gonzalez, I. L., Leonardo, B., & Becker, J. B. (2021). Sex differences in vulnerability to addiction. Neuropharmacology, 187, 108491. https://doi.org/10.1016/j.neuropharm.2021.108491.
Quinlan, M. G., Hussain, D., & Brake, W. G. (2008). Use of cognitive strategies in rats: The role of estradiol and its interaction with dopamine. Hormones and Behavior, 53, 185–191. https://doi.org/10.1016/j.yhbeh.2007.09.015.
Radke, A. K., Sneddon, E. A., & Monroe, S. C. (2021). Studying sex differences in rodent models of addictive behavior. Current Protocols, 1, e119. https://doi.org/10.1002/cpz1.119.
Rajakumar, G., Chiu, P., Chiu, S., Johnson, R. L., & Mishra, R. K. (1987). 17β estradiol‐induced increase in brain dopamine D‐2 receptor: Antagonism by MIF‐1. Peptides, 8, 997–1002. https://doi.org/10.1016/0196-9781(87)90127-6.
Ramos, J. A., Pais, J. R., Cebeira, M., & Fernández‐Ruiz, J. (1987). Role of estrogens on striatal dopaminergic activity. Journal of Steroid Biochemistry, 27, 683–689. https://doi.org/10.1016/0022-4731(87)90137-3.
Reynolds, J. N. J., Avvisati, R., Dodson, P. D., Fisher, S. D., Oswald, M. J., Wickens, J. R., & Zhang, Y.‐F. (2022). Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum. Nature Communications, 13, 1296. https://doi.org/10.1038/s41467-022-28950-0.
Reynolds, J. N. J., Hyland, B. I., & Wickens, J. R. (2001). A cellular mechanism of reward‐related learning. Nature, 413, 67–70. https://doi.org/10.1038/35092560.
Rice, J. P., Wallace, D. G., & Hamilton, D. A. (2015). Lesions of the hippocampus or dorsolateral striatum disrupt distinct aspects of spatial navigation strategies based on proximal and distal information in a cued variant of the Morris water task. Behavioural Brain Research, 289, 105–117. https://doi.org/10.1016/j.bbr.2015.04.026.
Rice, M. E., & Cragg, S. J. (2004). Nicotine amplifies reward‐related dopamine signals in striatum. Nature Neuroscience, 7, 583–584. https://doi.org/10.1038/nn1244.
Roberts, B. M., Lopes, E. F., & Cragg, S. J. (2021). Axonal modulation of striatal dopamine release by local γ‐aminobutyric acid (GABA) signalling. Cells, 10, 709. https://doi.org/10.3390/cells10030709.
Roy, E. J., Buyer, D. R., & Licari, V. A. (1990). Estradiol in the striatum: Effects on behavior and dopamine receptors but no evidence for membrane steroid receptors. Brain Research Bulletin, 25, 221–227. https://doi.org/10.1016/0361-9230(90)90064-7.
Schoenberg, H. L., Bremer, G. P., Carasi‐Schwartz, F., VonDoepp, S., Arntsen, C., Anacker, A. M. J., & Toufexis, D. J. (2022). Cyclic estrogen and progesterone during instrumental acquisition contributes to habit formation in female rats. Hormones and Behavior, 142, 105172. https://doi.org/10.1016/j.yhbeh.2022.105172.
Schultz, K. N., von Esenwein, S. A., Hu, M., Bennett, A. L., Kennedy, R. T., Musatov, S., Toran‐Allerand, C. D., Kaplitt, M. G., Young, L. J., & Becker, J. B. (2009). Viral vector‐mediated overexpression of estrogen receptor‐α in striatum enhances the estradiol‐induced motor activity in female rats and estradiol‐modulated GABA release. The Journal of Neuroscience, 29, 1897–1903. https://doi.org/10.1523/JNEUROSCI.4647-08.2009.
Seib, D. R., Tobiansky, D. J., Meitzen, J., Floresco, S. B., & Soma, K. K. (2023). Neurosteroids and the mesocorticolimbic system. Neuroscience and Biobehavioral Reviews, 153, 105356. https://doi.org/10.1016/j.neubiorev.2023.105356.
Seiler, J. L., Cosme, C. V., Sherathiya, V. N., Schaid, M. D., Bianco, J. M., Bridgemohan, A. S., & Lerner, T. N. (2022). Dopamine signaling in the dorsomedial striatum promotes compulsive behavior. Current Biology, 32, 1175–1188. https://doi.org/10.1016/j.cub.2022.01.055.
Sell, S. L., Scalzitti, J. M., Thomas, M. L., & Cunningham, K. A. (2000). Influence of ovarian hormones and estrous cycle on the behavioral response to cocaine in female rats. The Journal of Pharmacology and Experimental Therapeutics, 293, 879–886.
Sell, S. L., Thomas, M. L., & Cunningham, K. A. (2002). Influence of estrous cycle and estradiol on behavioral sensitization to cocaine in female rats. Drug and Alcohol Dependence, 67, 281–290. https://doi.org/10.1016/S0376-8716(02)00085-6.
Shaikh, A. A., & Shaikh, S. A. (1975). Adrenal and ovarian steroid secretion in the rat estrous cycle temporally related to gonadotropins and steroid levels found in peripheral plasma. Endocrinology, 96, 37–44. https://doi.org/10.1210/endo-96-1-37.
Shams, W. M., Sanio, C., Quinlan, M. G., & Brake, W. G. (2016). 17β‐estradiol infusions into the dorsal striatum rapidly increase dorsal striatal dopamine release in vivo. Neuroscience, 330, 162–170. https://doi.org/10.1016/j.neuroscience.2016.05.049.
Shen, W., Flajolet, M., Greengard, P., & Surmeier, D. J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science (80‐), 321, 848–851. https://doi.org/10.1126/science.1160575.
Shiflett, M. W., & Balleine, B. W. (2011). Contributions of ERK signaling in the striatum to instrumental learning and performance. Behavioural Brain Research, 218, 240–247. https://doi.org/10.1016/j.bbr.2010.12.010.
Song, Z., Yang, H., Peckham, E. M., & Becker, J. B. (2019). Estradiol‐induced potentiation of dopamine release in dorsal striatum following amphetamine administration requires estradiol receptors and mGlu5. eNeuro, 6, 1–8. https://doi.org/10.1523/ENEURO.0446-18.2019.
Staffend, N. A., Loftus, C. M., & Meisel, R. L. (2011). Estradiol reduces dendritic spine density in the ventral striatum of female Syrian hamsters. Brain Structure & Function, 215, 187–194. https://doi.org/10.1007/s00429-010-0284-7.
Stewart, A., Mayer, F. P., Gowrishankar, R., Davis, G. L., Areal, L. B., Gresch, P. J., Katamish, R. M., Peart, R., Stilley, S. E., Spiess, K., Rabil, M. J., Diljohn, F. A., Wiggins, A. E., Vaughan, R. A., Hahn, M. K., & Blakely, R. D. (2022). Behaviorally penetrant, anomalous dopamine efflux exposes sex and circuit dependent regulation of dopamine transporters. Molecular Psychiatry, 27, 4869–4880. https://doi.org/10.1038/s41380-022-01773-7.
Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine‐receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30, 228–235. https://doi.org/10.1016/j.tins.2007.03.008.
Surmeier, D. J., Plotkin, J., & Shen, W. (2009). Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Current Opinion in Neurobiology, 19, 621–628. https://doi.org/10.1016/j.conb.2009.10.003.
Tabatadze, N., Sato, S. M., & Woolley, C. S. (2014). Quantitative analysis of long‐form aromatase mRNA in the male and female rat brain. PLoS ONE, 9, e100628. https://doi.org/10.1371/journal.pone.0100628.
Takahashi, K., Bergström, M., Frändberg, P., Vesström, E. L., Watanabe, Y., & Långström, B. (2006). Imaging of aromatase distribution in rat and rhesus monkey brains with [11C]vorozole. Nuclear Medicine and Biology, 33, 599–605. https://doi.org/10.1016/j.nucmedbio.2006.03.009.
Thomas, P., Alyea, R., Pang, Y., Peyton, C., Dong, J., & Berg, H. (2010). Conserved estrogen binding and signaling functions of the G protein‐coupled estrogen receptor 1, GPER, in mammals and fish. Steroids, 75, 595–602. https://doi.org/10.1016/j.steroids.2009.11.005.
Tonnaer, J. A. D. M., Leinders, T., & van Delft, A. M. L. (1989). Ovariectomy and subchronic estradiol‐17β administration decrease dopamine D1 and D2 receptors in rat striatum. Psychoneuroendocrinology, 14, 469–476. https://doi.org/10.1016/0306-4530(89)90046-2.
Torres‐Hernández, A. R., & González‐Vegas, J. A. (2005). Effects of 17β‐estradiol on the spontaneous activity of substantia nigra neurons: Evidence for a non‐genomic mechanism. Brain Research, 1049, 1–7. https://doi.org/10.1016/j.brainres.2005.04.085.
Towers, E. B., Setaro, B., & Lynch, W. J. (2023). Estradiol enhances the development of addiction‐like features in a female rat model of opioid use disorder. Neuroendocrinology, 113, 1099–1111. https://doi.org/10.1159/000529997.
Tozzi, A., de Iure, A., Tantucci, M., Durante, V., Quiroga‐Varela, A., Giampà, C., Di Mauro, M., Mazzocchetti, P., Costa, C., Di Filippo, M., Grassi, S., Pettorossi, V. E., & Calabresi, P. (2015). Endogenous 17β‐estradiol is required for activity‐dependent long‐term potentiation in the striatum: Interaction with the dopaminergic system. Frontiers in Cellular Neuroscience, 9, 1–14. https://doi.org/10.3389/fncel.2015.00192.
Turner, K. M., Svegborn, A., Langguth, M., Mckenzie, C., & Robbins, T. W. (2022). Opposing roles of the dorsolateral and dorsomedial striatum in the acquisition of skilled action sequencing in rats. The Journal of Cell Biology, 42, 2039–2051.
Van Hartesveldt, C., Cotrell, G. A., & Meyer, M. E. (1989). Effects of intrastriatal hormones on the dorsal immobility response in the rat. Pharmacology, Biochemistry, and Behavior, 33, 321–324. https://doi.org/10.1016/0091-3057(89)90507-8.
Van Hartesveldt, C., Cottrell, G. A., & Meyer, M. E. (1989). The effects of intrastriatal hormones on the dorsal immobility response in gonadectomized male and female rats. Pharmacology, Biochemistry, and Behavior, 34, 459–463. https://doi.org/10.1016/0091-3057(89)90541-8.
Van Swearingen, A. E. D., Sanchez, C. L., Frisbee, S. M., Williams, A., Walker, Q. D., Korach, K. S., & Kuhn, C. M. (2013). Estradiol replacement enhances cocaine‐stimulated locomotion in female C57BL/6 mice through estrogen receptor alpha. Neuropharmacology, 72, 236–249. https://doi.org/10.1016/j.neuropharm.2013.04.015.
Walker, Q. D., Johnson, M. L., Van Swearingen, A. E. D., Arrant, A. E., Caster, J. M., & Kuhn, C. M. (2012). Individual differences in psychostimulant responses of female rats are associated with ovarian hormones and dopamine neuroanatomy. Neuropharmacology, 62, 2267–2277. https://doi.org/10.1016/j.neuropharm.2012.01.029.
Walker, Q. D., Rooney, M. B., Wightman, R. M., & Kuhn, C. M. (2000). Dopamine release and uptake are greater in female than male rat striatum as measured by fast cyclic voltammetry. Neuroscience, 95, 1061–1070. https://doi.org/10.1016/S0306-4522(99)00500-X.
Warfvinge, K., Krause, D. N., Maddahi, A., Edvinsson, J. C. A., Edvinsson, L., & Haanes, K. A. (2020). Estrogen receptors α, β and GPER in the CNS and trigeminal system ‐ molecular and functional aspects. The Journal of Headache and Pain, 21, 131. https://doi.org/10.1186/s10194-020-01197-0.
Willett, J. A., Cao, J., Dorris, D. M., Johnson, A. G., Ginnari, L. A., & Meitzen, J. (2019). Electrophysiological properties of medium spiny neuron subtypes in the caudate‐putamen of prepubertal male and female drd1a‐tdtomato line 6 BAC transgenic mice. eNeuro, 6, 1–14. https://doi.org/10.1523/ENEURO.0016-19.2019.
Willett, J. A., Cao, J., Johnson, A., Patel, O. H., Dorris, D. M., & Meitzen, J. (2020). The estrous cycle modulates rat caudate–putamen medium spiny neuron physiology. The European Journal of Neuroscience, 52, 2737–2755. https://doi.org/10.1111/ejn.14506.
Xiao, L., & Becker, J. B. (1994). Quantitative microdialysis determination of extracellular striatal dopamine concentration in male and female rats: Effects of estrous cycle and gonadectomy. Neuroscience Letters, 180, 155–158. https://doi.org/10.1016/0304-3940(94)90510-X.
Xiao, L., Jackson, L. R., & Becker, J. B. (2003). The effect of estradiol in the striatum is blocked by ICI 182,780 but not tamoxifen: Pharmacological and behavioral evidence. Neuroendocrinology, 77, 239–245. https://doi.org/10.1159/000070279.
Yagi, S., Drewczynski, D., Wainwright, S. R., Barha, C. K., Hershorn, O., & Galea, L. A. M. (2017). Sex and estrous cycle differences in immediate early gene activation in the hippocampus and the dorsal striatum after the cue competition task. Hormones and Behavior, 87, 69–79. https://doi.org/10.1016/j.yhbeh.2016.10.019.
Yin, H. H., & Knowlton, B. J. (2006). The role of the basal ganglia in habit formation. Nature Reviews. Neuroscience, 7, 464–476. https://doi.org/10.1038/nrn1919.
Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2005). Blockade of NMDA receptors in the dorsomedial striatum prevents action‐outcome learning in instrumental conditioning. The European Journal of Neuroscience, 22, 505–512. https://doi.org/10.1111/j.1460-9568.2005.04219.x.
Yin, H. H., Mulcare, S. P., Hilário, M. R. F., Clouse, E., Holloway, T., Hila, M. R. F., Davis, M. I., Hansson, A. C., Lovinger, D. M., & Costa, R. M. (2009). Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nature Neuroscience, 12, 333–342. https://doi.org/10.1038/nn.2261.
Yoest, K. E., Quigley, J. A., & Becker, J. B. (2018). Rapid effects of ovarian hormones in dorsal striatum and nucleus accumbens. Hormones and Behavior, 104, 119–129. https://doi.org/10.1016/j.yhbeh.2018.04.002.
Zhang, H., & Sulzer, D. (2004). Frequency‐dependent modulation of dopamine release by nicotine. Nature Neuroscience, 7, 581–582. https://doi.org/10.1038/nn1243.
Zhou, L., Ghee, S. M., See, R. E., & Reichel, C. M. (2015). Oxytocin differentially affects sucrose taking and seeking in male and female rats. Behavioural Brain Research, 283, 184–190. https://doi.org/10.1016/j.bbr.2015.01.050.
Zhu, Z., Liu, X., Senthil Kumar, S. P. D., Zhang, J., & Shi, H. (2013). Central expression and anorectic effect of brain‐derived neurotrophic factor are regulated by circulating estradiol levels. Hormones and Behavior, 63, 533–542. https://doi.org/10.1016/j.yhbeh.2013.01.009. - Grant Information: R01 DA056113 United States DA NIDA NIH HHS; P50 HD103556 United States HD NICHD NIH HHS; George Mason University; R01 MH 087463 United States MH NIMH NIH HHS; R01 056113 National Institute of Drug Abuse; R01 MH 087463 United States MH NIMH NIH HHS; P50 HD103556 United States HD NICHD NIH HHS
- Contributed Indexing: Keywords: dopamine; oestrogen receptors; oestrus; sex differences; synaptic plasticity
- Accession Number: 4TI98Z838E (Estradiol)
0 (Receptors, Estrogen)
VTD58H1Z2X (Dopamine) - Publication Date: Date Created: 20241122 Date Completed: 20241216 Latest Revision: 20241216
- Publication Date: 20241216
- Accession Number: 10.1111/ejn.16607
- Accession Number: 39573926
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.