Organoid models of breast cancer in precision medicine and translational research.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Niazi V;Niazi V;Niazi V; Parseh B; Parseh B; Parseh B
  • Source:
    Molecular biology reports [Mol Biol Rep] 2024 Nov 21; Vol. 52 (1), pp. 2. Date of Electronic Publication: 2024 Nov 21.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Reidel Country of Publication: Netherlands NLM ID: 0403234 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-4978 (Electronic) Linking ISSN: 03014851 NLM ISO Abbreviation: Mol Biol Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: Dordrecht, Boston, Reidel.
    • Subject Terms:
    • Abstract:
      One of the most famous and heterogeneous cancers worldwide is breast cancer (BC). Owing to differences in the gene expression profiles and clinical features of distinct BC subtypes, different treatments are prescribed for patients. However, even with more thorough pathological evaluations of tumors than in the past, available treatments do not perform equally well for all individuals. Precision medicine is a new approach that considers the effects of patients' genes, lifestyle, and environment to choose the right treatment for an individual patient. As a powerful tool, the organoid culture system can maintain the morphological and genetic characteristics of patients' tumors. Evidence also shows that organoids have high predictive value for patient treatment. In this review, a variety of BC studies performed on organoid culture systems are evaluated. Additionally, the potential of using organoid models in BC translational research, especially in immunotherapy, drug screening, and precision medicine, has been reported.
      Competing Interests: Declarations. Research involving human and animal rights: This study does not involve human participants or animals. Informed consent: As there was no direct patient data acquisition for this study, no informed consent was required or obtained [8]. Competing interests: The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Wang J et al (2019) The association between interleukin-1 polymorphisms and their protein expression in Chinese Han patients with breast cancer. Mol Genet Genom Med 7(8):e804. (PMID: 10.1002/mgg3.804)
      Khazaei G et al (2019) Proteomics evaluation of MDA-MB-231 breast cancer cells in response to RNAi-induced silencing of hPTTG. Life Sci 239:116873. (PMID: 3152168910.1016/j.lfs.2019.116873)
      Lakhani SR et al (2012) WHO Classification of Tumours of the Breast.
      Leiva MC et al (2021) Breast cancer patient-derived scaffolds as a tool to monitor chemotherapy responses in human tumor microenvironments. J Cell Physiol 236(6):4709–4724. (PMID: 3336832510.1002/jcp.30191)
      Tan PH et al (2020) The 2019 World Health Organization classification of tumours of the breast. Histopathology 77(2):181–185. (PMID: 3205625910.1111/his.14091)
      Nunes AS et al (2019) 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol Bioeng 116(1):206–226. (PMID: 3036782010.1002/bit.26845)
      Mansoori B et al (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharm Bull 7(3):339. (PMID: 29071215565105410.15171/apb.2017.041)
      Abugomaa A, Elbadawy M (2020) Patient-derived organoid analysis of drug resistance in precision medicine: is there a value? Taylor & Francis.
      Sachs N et al (2018) A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172(1–2):373–386e10. (PMID: 2922478010.1016/j.cell.2017.11.010)
      Ayyoob K et al (2016) Authentication of newly established human esophageal squamous cell carcinoma cell line (YM-1) using short tandem repeat (STR) profiling method. Tumor Biology 37(3):3197–3204. (PMID: 2643233010.1007/s13277-015-4133-4)
      Zhou J et al (2017) Microfluidic device for primary tumor spheroid isolation. Experimental Hematol Oncol 6(1):1–7. (PMID: 10.1186/s40164-017-0084-3)
      Hatamie S et al (2018) Heat transfer of PEGylated cobalt ferrite nanofluids for magnetic fluid hyperthermia therapy: in vitro cellular study. J Magn Magn Mater 462:185–194. (PMID: 10.1016/j.jmmm.2018.05.020)
      Yoshida GJ (2020) Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol 13(1):1–16. (PMID: 10.1186/s13045-019-0829-z)
      Drost J, Clevers H (2018) Organoids in cancer research. Nat Rev Cancer 18(7):407–418. (PMID: 2969241510.1038/s41568-018-0007-6)
      Xu H et al (2018) Organoid technology and applications in cancer research. J Hematol Oncol 11(1):1–15. (PMID: 29298689575154610.1186/s13045-018-0662-9)
      Veninga V, Voest EE (2021) Tumor organoids: opportunities and challenges to guide precision medicine. Cancer Cell.
      Parseh B et al (2022) 3-Dimensional model to study apoptosis induction of activated natural killer cells conditioned medium using patient-derived colorectal cancer organoids. Front Cell Dev Biology, p. 1063.
      Dekkers JF et al (2021) Long-term culture, genetic manipulation and xenotransplantation of human normal and breast cancer organoids. Nat Protoc 16(4):1936–1965. (PMID: 33692550822103510.1038/s41596-020-00474-1)
      Zardavas D et al (2015) Clinical management of breast cancer heterogeneity. Nat Reviews Clin Oncol 12(7):381. (PMID: 10.1038/nrclinonc.2015.73)
      Harbeck N et al (2019) Breast cancer. Nat Reviews Disease Primers 5(1):66. (PMID: 3154854510.1038/s41572-019-0111-2)
      Rouzier R et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11(16):5678–5685. (PMID: 1611590310.1158/1078-0432.CCR-04-2421)
      Dai X et al (2015) Breast cancer intrinsic subtype classification, clinical use and future trends. Am J cancer Res 5(10):2929. (PMID: 266930504656721)
      Cheang MC et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. JNCI: J Natl Cancer Inst 101(10):736–750. (PMID: 19436038268455310.1093/jnci/djp082)
      Prat A et al (2015) Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 24:S26–S35. (PMID: 2625381410.1016/j.breast.2015.07.008)
      Driehuis E, Kretzschmar K, Clevers H (2020) Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 15(10):3380–3409. (PMID: 3292921010.1038/s41596-020-0379-4)
      Nagle PW et al (2018) Patient-derived tumor organoids for prediction of cancer treatment response. Seminars in cancer biology. Elsevier.
      Aggarwal D et al (2023) Establishment and Culture of Patient-Derived Breast Organoids. J Vis Exp, (192).
      Shirure VS et al (2018) Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip 18(23):3687–3702. (PMID: 303938021064498610.1039/C8LC00596F)
      Wang G et al (2021) Prospects and challenges of anticancer agents’ delivery via chitosan-based drug carriers to combat breast cancer: A review. Carbohydr Polym, p. 118192.
      Macias H, Hinck L (2012) Mammary gland development. Wiley Interdisciplinary Reviews: Dev Biology 1(4):533–557. (PMID: 10.1002/wdev.35)
      Rosenbluth JM et al (2020) Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat Commun 11(1):1–14. (PMID: 10.1038/s41467-020-15548-7)
      Srivastava V et al (2020) Organoid models for mammary gland dynamics and breast cancer. Curr Opin Cell Biol 66:51–58. (PMID: 32535255817501510.1016/j.ceb.2020.05.003)
      Roelofs C et al (2019) Breast tumour organoids: promising models for the genomic and functional characterisation of breast cancer. Biochem Soc Trans 47(1):109–117. (PMID: 3062670510.1042/BST20180375)
      Mazzucchelli S et al (2019) Establishment and morphological characterization of patient-derived organoids from breast cancer. Biol Procedures Online 21(1):1–13. (PMID: 10.1186/s12575-019-0099-8)
      Goldhammer N et al (2019) Characterization of organoid cultured human breast cancer. Breast Cancer Res 21(1):1–8. (PMID: 10.1186/s13058-019-1233-x)
      Signati L et al (2021) Ultrastructural analysis of breast cancer patient-derived organoids. Cancer Cell Int 21(1):1–13. (PMID: 10.1186/s12935-021-02135-z)
      Stewart TA, Davis FM (2020) A primary cell and organoid platform for evaluating pharmacological responses in mammary epithelial cells. ACS Pharmacol Translational Sci 3(1):63–75. (PMID: 10.1021/acsptsci.9b00090)
      Jackson SE, Chester JD (2015) Personalised cancer medicine. Int J Cancer 137(2):262–266. (PMID: 2478936210.1002/ijc.28940)
      Hodson R (2016) Precision medicine. Nature 537(7619):S49–S49. (PMID: 2760273810.1038/537S49a)
      Pauli C et al (2017) Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov 7(5):462–477. (PMID: 28331002541342310.1158/2159-8290.CD-16-1154)
      Botti G, Di Bonito M, Cantile M (2021) Organoid biobanks as a new tool for pre-clinical validation of candidate drug efficacy and safety. Int J Physiol Pathophysiology Pharmacol 13(1):17.
      Weeber F et al (2017) Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biology 24(9):1092–1100. (PMID: 10.1016/j.chembiol.2017.06.012)
      Xia X et al (2019) Organoid technology in cancer precision medicine. Cancer Lett 457:20–27. (PMID: 3107873610.1016/j.canlet.2019.04.039)
      Jin M-Z et al (2018) Organoids: an intermediate modeling platform in precision oncology. Cancer Lett 414:174–180. (PMID: 2917480410.1016/j.canlet.2017.11.021)
      Bleijs M et al (2019) Xenograft and organoid model systems in cancer research. EMBO J 38(15):e101654. (PMID: 31282586667001510.15252/embj.2019101654)
      Sachs N, Clevers H (2014) Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev 24:68–73. (PMID: 2465753910.1016/j.gde.2013.11.012)
      Zumwalde NA et al (2016) Analysis of immune cells from human mammary ductal epithelial organoids reveals Vδ2 + T cells that efficiently target breast carcinoma cells in the presence of bisphosphonate. Cancer Prev Res 9(4):305–316. (PMID: 10.1158/1940-6207.CAPR-15-0370-T)
      Yang L et al (2020) Progress in the application of organoids to breast cancer research. J Cell Mol Med 24(10):5420–5427. (PMID: 32283573721417110.1111/jcmm.15216)
      Es HA et al (2018) Personalized cancer medicine: an organoid approach. Trends Biotechnol 36(4):358–371. (PMID: 10.1016/j.tibtech.2017.12.005)
      Clevers H (2016) Modeling development and disease with organoids. Cell 165(7):1586–1597. (PMID: 2731547610.1016/j.cell.2016.05.082)
      Grothey A et al (2004) Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 22(7):1209–1214. (PMID: 1505176710.1200/JCO.2004.11.037)
      Prigerson HG et al (2015) Chemotherapy use, performance status, and quality of life at the end of life. JAMA Oncol 1(6):778–784. (PMID: 26203912482872810.1001/jamaoncol.2015.2378)
      Ooft SN et al (2019) Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Science translational medicine, 11(513).
      Cho H-S et al (2003) Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421(6924):756–760. (PMID: 1261062910.1038/nature01392)
      Siegel PM et al (1999) Elevated expression of activated forms of Neu/ErbB-2 and ErbB‐3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J 18(8):2149–2164. (PMID: 10205169117129910.1093/emboj/18.8.2149)
      Rimawi MF, Schiff R, Osborne CK (2015) Targeting HER2 for the treatment of breast cancer. Annu Rev Med, 66.
      Gutierrez C, Schiff R (2011) HER2: biology, detection, and clinical implications. Arch Pathol Lab Med 135(1):55–62. (PMID: 21204711324241810.5858/2010-0454-RAR.1)
      Oh D-Y, Bang Y-J (2020) HER2-targeted therapies—a role beyond breast cancer. Nat Reviews Clin Oncol 17(1):33–48. (PMID: 10.1038/s41571-019-0268-3)
      Wilson FR et al (2018) Herceptin ® (trastuzumab) in HER2-positive early breast cancer: a systematic review and cumulative network meta-analysis. Syst Reviews 7(1):1–17. (PMID: 10.1186/s13643-018-0854-y)
      de Gagliato M (2016) Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2 + breast cancer. Oncotarget 7(39):64431. (PMID: 10.18632/oncotarget.7043)
      Goutsouliak K et al (2020) Towards personalized treatment for early stage HER2-positive breast cancer. Nat Reviews Clin Oncol 17(4):233–250. (PMID: 10.1038/s41571-019-0299-9)
      Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339(22):1609–1618. (PMID: 982825010.1056/NEJM199811263392207)
      Loi S et al (2008) Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9(1):1–12. (PMID: 10.1186/1471-2164-9-239)
      Comen EA, Robson M (2010) Poly (ADP-ribose) polymerase inhibitors in triple-negative breast cancer. Cancer J (Sudbury Mass) 16(1):48. (PMID: 10.1097/PPO.0b013e3181cf01eb)
      Comen EA, Robson M (2010) Inhibition of poly (ADP)-ribose polymerase as a therapeutic strategy for breast cancer. Oncology 24(1):55. (PMID: 20187322)
      Tutt A, Ashworth A (2002) The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol Med 8(12):571–576. (PMID: 1247099010.1016/S1471-4914(02)02434-6)
      Greenwalt I et al (2020) Precision medicine and targeted therapies in breast cancer. Surg Oncol Clin 29(1):51–62. (PMID: 10.1016/j.soc.2019.08.004)
      Conklin MW et al (2009) Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem Biophys 53(3):145–157. (PMID: 19259625557575410.1007/s12013-009-9046-7)
      Walsh AJ et al (2013) Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res 73(20):6164–6174. (PMID: 24130112380143210.1158/0008-5472.CAN-13-0527)
      Skala MC et al (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci 104(49):19494–19499. (PMID: 18042710214831710.1073/pnas.0708425104)
      Walsh AJ et al (2014) Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res 74(18):5184–5194. (PMID: 25100563416755810.1158/0008-5472.CAN-14-0663)
      Diermeier SD et al (2016) Mammary tumor-associated RNAs impact tumor cell proliferation, invasion, and migration. Cell Rep 17(1):261–274. (PMID: 27681436507929010.1016/j.celrep.2016.08.081)
      Hörig H, Marincola E, Marincola FM (2005) Obstacles and opportunities in translational research. Nat Med 11(7):705–708. (PMID: 1601535310.1038/nm0705-705)
      Corrò C, Novellasdemunt L, Li VS (2020) A brief history of organoids. Am J Physiology-Cell Physiol 319(1):C151–C165. (PMID: 10.1152/ajpcell.00120.2020)
      Li Y et al (2020) Organoid based personalized medicine: from bench to bedside. Cell Regeneration 9(1):1–33. (PMID: 10.1186/s13619-020-00059-z)
      van de Wetering M et al (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161(4):933–945. (PMID: 25957691642827610.1016/j.cell.2015.03.053)
      Vlachogiannis G et al (2018) Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359(6378):920–926. (PMID: 29472484611241510.1126/science.aao2774)
      Fujii M et al (2016) A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18(6):827–838. (PMID: 2721270210.1016/j.stem.2016.04.003)
      Weeber F et al (2015) Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc Natl Acad Sci 112(43):13308–13311. (PMID: 26460009462933010.1073/pnas.1516689112)
      Yan HH et al (2018) A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23(6):882–897e11. (PMID: 3034410010.1016/j.stem.2018.09.016)
      Seidlitz T et al (2019) Human gastric cancer modelling using organoids. Gut 68(2):207–217. (PMID: 2970379110.1136/gutjnl-2017-314549)
      Beshiri ML et al (2018) A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin Cancer Res 24(17):4332–4345. (PMID: 29748182612520210.1158/1078-0432.CCR-18-0409)
      Li Y et al (2020) Patient-derived organoids of non-small cells lung cancer and their application for drug screening. Neoplasma 67(2):430–437. (PMID: 3197353510.4149/neo_2020_190417N346)
      Sachs N et al (2019) Long-term expanding human airway organoids for disease modeling. EMBO J 38(4):e100300. (PMID: 30643021637627510.15252/embj.2018100300)
      Broutier L et al (2017) Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat Med 23(12):1424–1435. (PMID: 29131160572220110.1038/nm.4438)
      Nuciforo S et al (2018) Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep 24(5):1363–1376. (PMID: 30067989608815310.1016/j.celrep.2018.07.001)
      Kopper O et al (2019) An organoid platform for ovarian cancer captures intra-and interpatient heterogeneity. Nat Med 25(5):838–849. (PMID: 3101120210.1038/s41591-019-0422-6)
      Lee SH et al (2018) Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173(2):515–528e17. (PMID: 29625057589094110.1016/j.cell.2018.03.017)
      Driehuis E et al (2019) Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci 116(52):26580–26590. (PMID: 31818951693668910.1073/pnas.1911273116)
      Gaj T et al (2016) Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 8(12):a023754. (PMID: 27908936513177110.1101/cshperspect.a023754)
      Artegiani B et al (2020) Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing. Nat Cell Biol 22(3):321–331. (PMID: 3212333510.1038/s41556-020-0472-5)
      Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168(1–2):20–36. (PMID: 2786665410.1016/j.cell.2016.10.044)
      Dekkers JF et al (2020) Modeling breast Cancer using CRISPR-Cas9–mediated engineering of human breast organoids. JNCI: J Natl Cancer Inst 112(5):540–544. (PMID: 3158932010.1093/jnci/djz196)
      Dijkstra KK et al (2018) Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174(6):1586–1598e12. (PMID: 30100188655828910.1016/j.cell.2018.07.009)
      Yuki K et al (2020) Organoid models of tumor immunology. Trends in immunology.
      Homicsko K (2020) Organoid technology and applications in cancer immunotherapy and precision medicine. Curr Opin Biotechnol 65:242–247. (PMID: 3260397810.1016/j.copbio.2020.05.002)
      Ashok A et al (2020) Towards manufacturing of human organoids. Biotechnol Adv 39:107460. (PMID: 3162695110.1016/j.biotechadv.2019.107460)
      Hendrickson PG et al (2020) The promise of adoptive cellular immunotherapies in hepatocellular carcinoma. Oncoimmunology 9(1):1673129. (PMID: 3200228410.1080/2162402X.2019.1673129)
      Bar-Ephraim YE, Kretzschmar K, Clevers H (2020) Organoids in immunological research. Nat Rev Immunol 20(5):279–293. (PMID: 3185304910.1038/s41577-019-0248-y)
      Lanz HL et al (2017) Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 17(1):709. (PMID: 29096610566895710.1186/s12885-017-3709-3)
      Marei I et al (2022) 3D tissue-Engineered Vascular Drug Screening platforms: promise and considerations. Front Cardiovasc Med 9:847554. (PMID: 35310996893149210.3389/fcvm.2022.847554)
      Foglizzo V, Cocco E, Marchiò S (2022) Advanced Cellular models for Preclinical Drug Testing: from 2D cultures to Organ-on-a-Chip technology. Cancers (Basel), 14(15).
      Subia B et al (2021) Breast tumor-on-chip models: from disease modeling to personalized drug screening. J Control Release 331:103–120. (PMID: 33417986817238510.1016/j.jconrel.2020.12.057)
      Pradhan S et al (2018) A Microvascularized Tumor-mimetic platform for assessing anti-cancer drug efficacy. Sci Rep 8(1):3171. (PMID: 29453454581659510.1038/s41598-018-21075-9)
      Bengtsson A et al (2021) Organoid technology for personalized pancreatic cancer therapy. Cell Oncol (Dordr) 44(2):251–260. (PMID: 3349266010.1007/s13402-021-00585-1)
      Prince E et al (2022) Microfluidic arrays of breast Tumor spheroids for Drug Screening and Personalized Cancer therapies. Adv Healthc Mater 11(1):e2101085. (PMID: 3463618010.1002/adhm.202101085)
      Reid JA et al (2019) A 3D bioprinter platform for mechanistic analysis of tumoroids and chimeric mammary organoids. Sci Rep 9(1):7466. (PMID: 31097753652249410.1038/s41598-019-43922-z)
      Lopez-Vince E, Wilhelm C, Simon-Yarza T (2024) Vascularized tumor models for the evaluation of drug delivery systems: a paradigm shift. Drug Deliv Transl Res 14(8):2216–2241. (PMID: 386197041120822110.1007/s13346-024-01580-3)
      Franchi-Mendes T et al (2021) 3D Cancer Models: Depicting Cellular Crosstalk within the Tumour Microenvironment. Cancers (Basel), 13(18).
      Baghban R et al (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 18(1):59. (PMID: 32264958714034610.1186/s12964-020-0530-4)
      Wang X et al (2024) Converging bioprinting and organoids to better recapitulate the tumor microenvironment. Trends Biotechnol 42(5):648–663. (PMID: 3807114510.1016/j.tibtech.2023.11.006)
      Fan H, Demirci U, Chen P (2019) Emerging organoid models: leaping forward in cancer research. J Hematol Oncol 12(1):142. (PMID: 31884964693611510.1186/s13045-019-0832-4)
      Shi W et al (2023) Embedded bioprinting of breast tumor cells and organoids using low-concentration collagen‐based bioinks. Adv Healthc Mater 12(26):2300905. (PMID: 374224471059239410.1002/adhm.202300905)
      Ma X et al (2024) Cancer organoids: a platform in basic and translational research. Genes Dis 11(2):614–632. (PMID: 3769247710.1016/j.gendis.2023.02.052)
      Driehuis E et al (2019) Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov 9(7):852–871. (PMID: 3105362810.1158/2159-8290.CD-18-1522)
      Tuveson D, Clevers H (2019) Cancer modeling meets human organoid technology. Science 364(6444):952–955. (PMID: 3117169110.1126/science.aaw6985)
      Fernández-Periáñez R et al (2013) Basement membrane-rich organoids with functional human blood vessels are permissive niches for human breast cancer metastasis. PLoS ONE 8(8):e72957. (PMID: 23951338373854510.1371/journal.pone.0072957)
      Orimo A et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348. (PMID: 1588261710.1016/j.cell.2005.02.034)
      Yamashita M et al (2012) Role of stromal myofibroblasts in invasive breast cancer: stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer 19(2):170–176. (PMID: 2097895310.1007/s12282-010-0234-5)
      Fisher MF, Rao SS (2020) Three-dimensional culture models to study drug resistance in breast cancer. Biotechnol Bioeng 117(7):2262–2278. (PMID: 3229797110.1002/bit.27356)
    • Contributed Indexing:
      Keywords: Breast cancer; Drug screening; Organoid; Precision medicine
    • Publication Date:
      Date Created: 20241121 Date Completed: 20241121 Latest Revision: 20241125
    • Publication Date:
      20250114
    • Accession Number:
      10.1007/s11033-024-10101-x
    • Accession Number:
      39570495