Removal of nutrients from synthetic wastewater by different Brazilian chlorophyte strains in batch bioreactors under various light regimes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
    • Publication Information:
      Publication: 1998- : Dordrecht : Springer
      Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
    • Subject Terms:
    • Abstract:
      With the increase in pollution and improper waste disposal, aquatic ecosystems are experiencing escalating degradation leading to various detrimental effects, including eutrophication and adverse impacts on the health of the population reliant on these water resources. Consequently, microalgae have demonstrated efficacy in nutrient removal, minimal environmental disruption, and superior cost-effectiveness in comparison to traditional treatment methods. Thus, this study aimed to investigate wastewater treatment in an aerobic batch system, using two strains of non-axenic mixotrophic chlorophytes, Chlorella sp. and Desmodesmus sp., across distinct light regimes: continuous light exposure for 24 h, a photoperiod of 12 h light and 12 h darkness, and complete absence of light for 24 h. The Desmodesmus sp. strain exhibited superior efficiency in the proposed biological treatment, yielding more favorable nutrient removal results across all conditions, except for total nitrogen removal under the 24-h continuous light condition in which Chlorella sp. removed 0.199 ± 0.02% by biomass. In other parameters, Desmodesmus sp., remediated by biomass 0.408 ± 0.013% of inorganic phosphorus in 24 h light, 0.372 ± 0.011% of COD and 0.416 ± 0.004% of carbohydrate in 24 h dark. While Chlorella sp. removed 0.221 ± 0.01% of inorganic phosphorus in 24 h light, 0.164 ± 0.02% of COD in 24 h light and 0.214 ± 0.002% of carbohydrates in 24 h dark. Nevertheless, both strains displayed potential as viable alternatives for wastewater biological treatment, indicating that nutrient removal is achievable across all tested light conditions, albeit with variations in efficiency depending on the specific nutrient type.
      Competing Interests: Declarations Ethics approval and consent to participate Not applicable. Consent for publication All the authors mutually consent to the publication of this manuscript and state that it has not been previously published in another journal. Competing interests The authors declare no competing interests.
      (© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
    • References:
      Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences,19(3), 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005. (PMID: 10.1016/j.sjbs.2012.04.005)
      Abreu, A. P., Morais, R. C., Teixeira, J. A., & Nunes, J. (2022). A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes. Renewable and Sustainable Energy Reviews,159(February), 112247. https://doi.org/10.1016/j.rser.2022.112247. (PMID: 10.1016/j.rser.2022.112247)
      Ahmad, I., Abdullah, N., Koji, I., Yuzir, A., & Mohamad, S. E. (2021). Potential of microalgae in bioremediation of wastewater. Bulletin of Chemical Reaction Engineering & Catalysis,16(2), 413–429. https://doi.org/10.9767/bcrec.16.2.10616.413-429. (PMID: 10.9767/bcrec.16.2.10616.413-429)
      Angelo, E. A., Andrade, D. S., & Colozzi Filho, A. (2015). Cultivo não-fotoautotrófico de microalgas: Uma visão geral. Semina: Ciências Biológicas e da Saúde,35(2), 125–136. https://doi.org/10.5433/1679-0367.2014v35n2p125. (PMID: 10.5433/1679-0367.2014v35n2p125)
      Antal, T., Petrova, E., Slepnyova, V., Kukarskikh, G., Volgusheva, A., Dubini, A., et al. (2020). Photosynthetic hydrogen production as acclimation mechanism in nutrient-deprived Chlamydomonas. Algal Research,49, 101951. https://doi.org/10.1016/j.algal.2020.101951. (PMID: 10.1016/j.algal.2020.101951)
      APHA. (2012). Standard methods for the examination of water and wastewater (22nd ed.). American Publisher Health Association.
      Bhuyar, P., Farez, F., Rahim, M. H. A., Maniam, G. P., & Govindan, N. (2021). Removal of nitrogen and phosphorus from agro-industrial wastewater by using microalgae collected from coastal region of peninsular Malaysia. African Journal of Biological Sciences (South Africa),3(1), 58–66. https://doi.org/10.33472/AFJBS.3.1.2021.58-66. (PMID: 10.33472/AFJBS.3.1.2021.58-66)
      Blundi, C. E., Gadelha, R. F. (2001). Metodologia para determinação de matéria orgânica específica em águas residuárias. In: Chernicharo, C. A. L. (coord.). Pós-tratamento de efluentes de reatores anaeróbios: aspectos metodológicos (pp. 9–17). PROSAB.
      Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews,19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030. (PMID: 10.1016/j.rser.2012.11.030)
      Carneiro, R. B., Sabatini, C. A., Santos-Neto, Á. J., & Zaiat, M. (2019). Feasibility of anaerobic packed and structured-bed reactors for sulfamethoxazole and ciprofloxacin removal from domestic sewage. Science of the Total Environment,678, 419–429. https://doi.org/10.1016/j.scitotenv.2019.04.437. (PMID: 10.1016/j.scitotenv.2019.04.437)
      Chaudhary, R., Tong, Y. W., & Dikshit, A. K. (2020). Kinetic study of nutrients removal from municipal wastewater by Chlorella vulgaris in photobioreactor supplied with CO 2 -enriched air. Environmental Technology,41(5), 617–626. https://doi.org/10.1080/09593330.2018.1508250. (PMID: 10.1080/09593330.2018.1508250)
      Cheng, P., Chen, D., Liu, W., Cobb, K., Zhou, N., Liu, Y., et al. (2020). Auto-flocculation microalgae species tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal. Science of the Total Environment,725, 138263. https://doi.org/10.1016/j.scitotenv.2020.138263. (PMID: 10.1016/j.scitotenv.2020.138263)
      de Assis Neto, D. Q., de Almeida Lopes, T. S., Dos Santos, W. B., Ferreira, W. B., & de Lima, V. L. A. (2021). Bioremediator potential of the microalgae Chlorella vulgaris BEIJERINCK in a wastewater composed medium. Aguas Subterraneas, 35(3), 1–11. https://doi.org/10.14295/ras.v35i3.30095.
      de Melo, R. G., de Andrade, A. F., Bezerra, R. P., Correia, D. S., de Souza, V. C., Brasileiro-Vidal, A. C., et al. (2018). Chlorella vulgaris mixotrophic growth enhanced biomass productivity and reduced toxicity from agro-industrial by-products. Chemosphere,204, 344–350. https://doi.org/10.1016/j.chemosphere.2018.04.039. (PMID: 10.1016/j.chemosphere.2018.04.039)
      Delgadillo-Mirquez, L., Lopes, F., Taidi, B., & Pareau, D. (2016). Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports,11, 18–26. https://doi.org/10.1016/j.btre.2016.04.003. (PMID: 10.1016/j.btre.2016.04.003)
      Dias, G., Hipólito, M., Santosa, F., Lourega, R., de Mattia, J., Eichler, P., & Alvesa, J. (2019). Biorremediation of industrial effluent using microalgae. Quimica Nova, 42(8), 891–899. https://doi.org/10.21577/0100-4042.20170393.
      DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry,28(3), 350–356. https://doi.org/10.1021/ac60111a017. (PMID: 10.1021/ac60111a017)
      Fan, H., Wang, K., Wang, C., Yu, F., He, X., Ma, J., & Li, X. (2020). A comparative study on growth characters and nutrients removal from wastewater by two microalgae under optimized light regimes. Environmental Technology and Innovation,19(5), 100849. https://doi.org/10.1016/j.eti.2020.100849. (PMID: 10.1016/j.eti.2020.100849)
      Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research,24, 403–415. https://doi.org/10.1016/j.algal.2016.11.008. (PMID: 10.1016/j.algal.2016.11.008)
      Gorman, D. S., & Levine, R. P. (1965). Cytochrome f and plastocyanin: Their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proceedings of the National Academy of Sciences of the United States of America,54(6), 1665–1669. https://doi.org/10.1073/pnas.54.6.1665. (PMID: 10.1073/pnas.54.6.1665)
      Hirata, S., Hayashitani, M., Taya, M., & Tone, S. (1996). Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-collection device. Journal of Fermentation and Bioengineering,81(5), 470–472. https://doi.org/10.1016/0922-338X(96)85151-8. (PMID: 10.1016/0922-338X(96)85151-8)
      Krebs, V., Oliveira, R. F., & Schröder, N. T. (2021). Avaliação da eficiência de ilhas flutuantes com plantas para a melhoria da qualidade hídrica de ecossistemas aquáticos. Aletheia,54(1), 16–27. https://doi.org/10.29327/226091.54.1-2. (PMID: 10.29327/226091.54.1-2)
      Kumar, P. K., Vijaya Krishna, S., Verma, K., Pooja, K., Bhagawan, D., & Himabindu, V. (2018). Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. South African Journal of Chemical Engineering. https://doi.org/10.1016/j.sajce.2018.04.006. (PMID: 10.1016/j.sajce.2018.04.006)
      Le, T. T. A., & Nguyen, T. (2024). Potential of hospital wastewater treatment using locally isolated Chlorella sp. LH2 from cocoon wastewater. Bioresources and Bioprocessing,11(1), 35. https://doi.org/10.1186/s40643-024-00748-6. (PMID: 10.1186/s40643-024-00748-6)
      Lee, C. S., Lee, S.-A., Ko, S.-R., Oh, H.-M., & Ahn, C.-Y. (2015). Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Research,68, 680–691. https://doi.org/10.1016/j.watres.2014.10.029. (PMID: 10.1016/j.watres.2014.10.029)
      Lee, J., Lee, J., Shukla, S. K., Park, J., & Lee, T. K. (2016). Effect of algal inoculation on COD and nitrogen removal, and indigenous bacterial dynamics in municipal wastewater. Journal of Microbiology and Biotechnology,26(5), 900–908. https://doi.org/10.4014/jmb.1512.12067. (PMID: 10.4014/jmb.1512.12067)
      Li, K., Liu, Q., Fang, F., Luo, R., Lu, Q., Zhou, W., et al. (2019). Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology,291(June), 121934. https://doi.org/10.1016/j.biortech.2019.121934. (PMID: 10.1016/j.biortech.2019.121934)
      Li, T., Zheng, Y., Yu, L., & Chen, S. (2014). Mixotrophic cultivation of a hlorella sorokiniana strain for enhanced biomass and lipid production. Biomass and Bioenergy,66, 204–213. https://doi.org/10.1016/j.biombioe.2014.04.010. (PMID: 10.1016/j.biombioe.2014.04.010)
      Luo, L., Shao, Y., Luo, S., Zeng, F., & Tian, G. (2019). Nutrient removal from piggery wastewater by esmodesmus sp.CHX1 and its cultivation conditions optimization. Environmental Technology,40(21), 2739–2746. https://doi.org/10.1080/09593330.2018.1449903. (PMID: 10.1080/09593330.2018.1449903)
      Mhedhbi, E., Khelifi, N., Foladori, P., & Smaali, I. (2020). Real-Time behavior of a microalgae-bacteria consortium treating wastewater in a sequencing batch reactor in response to feeding time and agitation mode. Water (Switzerland), 12(7). https://doi.org/10.3390/w12071893.
      Moondra, N., Jariwala, N. D., & Christian, R. A. (2021). Microalgae based wastewater treatment: A shifting paradigm for the developing nations. International Journal of Phytoremediation,23(7), 765–771. https://doi.org/10.1080/15226514.2020.1857333. (PMID: 10.1080/15226514.2020.1857333)
      Mujtaba, G., Rizwan, M., & Lee, K. (2017). Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga chlorella vulgaris. Journal of Industrial and Engineering Chemistry,49, 145–151. https://doi.org/10.1016/j.jiec.2017.01.021. (PMID: 10.1016/j.jiec.2017.01.021)
      Nederlands Norm. (1981). Norm 6520: Water: Spectrophotometric determination of chlorophyll a content. Nederlands Normalisatie-Instituut, Delft, The Netherlands (in Dutch).
      Nezbrytska, I., Shamanskyi, S., Pavliukh, L., & Kharchenko, G. (2022). Assessment of inorganic nitrogen and phosphorus compounds removal efficiency from different types of wastewater using microalgae cultures. Oceanological and Hydrobiological Studies,51(1), 45–52. https://doi.org/10.26881/oahs-2022.1.05. (PMID: 10.26881/oahs-2022.1.05)
      Nusch, E. A. (1980). Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie, 14, 14-36.
      Ogbonna, I. O., Okpozu, O. O., Ikwebe, J., & Ogbonna, J. C. (2019). Utilisation of Desmodesmus subspicatus LC172266 for simultaneous remediation of cassava wastewater and accumulation of lipids for biodiesel production. Biofuels,10(5), 657–664. https://doi.org/10.1080/17597269.2018.1426164. (PMID: 10.1080/17597269.2018.1426164)
      Pachés, M., Martínez-Guijarro, R., González-Camejo, J., Seco, A., & Barat, R. (2020). Selecting the most suitable microalgae species to treat the effluent from an anaerobic membrane bioreactor. Environmental Technology,41(3), 267–276. https://doi.org/10.1080/09593330.2018.1496148. (PMID: 10.1080/09593330.2018.1496148)
      Pang, N., Gu, X., Chen, S., Kirchhoff, H., Lei, H., & Roje, S. (2019). Exploiting mixotrophy for improving productivities of biomass and co-products of microalgae. Renewable and Sustainable Energy Reviews,112(June), 450–460. https://doi.org/10.1016/j.rser.2019.06.001. (PMID: 10.1016/j.rser.2019.06.001)
      Pham, T.-L., & Bui, M. H. (2020). Removal of nutrients from fertilizer plant wastewater using scenedesmus sp.: Formation of bioflocculation and enhancement of removal efficiency. Journal of Chemistry,2020, 1–9. https://doi.org/10.1155/2020/8094272. (PMID: 10.1155/2020/8094272)
      Russel, M., Meixue, Q., Alam, M. A., Lifen, L., Daroch, M., Blaszczak-Boxe, C., & Kumar Gupta, G. (2020). Investigating the potentiality of Scenedesmus obliquus and Acinetobacter pittii partnership system and their effects on nutrients removal from synthetic domestic wastewater. Bioresource Technology, 299(December 2019), 122571. https://doi.org/10.1016/j.biortech.2019.122571.
      Salgado, E. M., Esteves, A. F., Gonçalves, A. L., & Pires, J. C. M. (2023). Microalgal cultures for the remediation of wastewaters with different nitrogen to phosphorus ratios: Process modelling using artificial neural networks. Environmental Research, 231(May). https://doi.org/10.1016/j.envres.2023.116076.
      Sarfraz, R., Taneez, M., Sardar, S., Danish, L., & Hameed, A. (2023). Evaluation of esmodesmus subspicatus for the treatment of wastewater. International Journal of Environmental Analytical Chemistry,103(15), 3575–3586. https://doi.org/10.1080/03067319.2021.1910681. (PMID: 10.1080/03067319.2021.1910681)
      Tan, Y. H., Chai, M. K., Na, J. Y., & Wong, L. S. (2023). Microalgal growth and nutrient removal efficiency in non-sterilised primary domestic wastewater. Sustainability (Switzerland),15(8), 1–13. https://doi.org/10.3390/su15086601. (PMID: 10.3390/su15086601)
      Torres, P. (1992). Desempenho de um reator anaeróbio de manta de lodo (UASB) de bancada no tratamento de substrato sintético simulando esgotos sanitários (Dissertação Mestrado). Universidade de São Paulo.
      Vargas, S. R., Macêdo, W. V., Trindade, L. F., & Zaiat, M. (2024). Influence of organic carbon source on hydrogen production and nutrient removal by microbial consortium in anaerobic photobioreactors. International Journal of Hydrogen Energy, 54, 1160–1168. https://doi.org/10.1016/j.ijhydene.2023.11.354. (PMID: 10.1016/j.ijhydene.2023.11.354)
      Vargas, S. R., Zaiat, M., & do Carmo Calijuri, M. (2021). Chlamydomonas strains respond differently to photoproduction of hydrogen and by-products and nutrient uptake in sulfur-deprived cultures. Journal of Environmental Chemical Engineering, 9(5), 105930. https://doi.org/10.1016/j.jece.2021.105930.
      Vuppaladadiyam, A. K., Prinsen, P., Raheem, A., Luque, R., & Zhao, M. (2018). Microalgae cultivation and metabolites production: A comprehensive review. Biofuels, Bioproducts and Biorefining,12(2), 304–324. https://doi.org/10.1002/bbb.1864. (PMID: 10.1002/bbb.1864)
    • Contributed Indexing:
      Keywords: Chlorella sp.; Desmodesmus sp.; Autochthonous bacteria; Mixotrophy; Wastewater treatment
    • Accession Number:
      0 (Wastewater)
      27YLU75U4W (Phosphorus)
      N762921K75 (Nitrogen)
      0 (Water Pollutants, Chemical)
    • Publication Date:
      Date Created: 20241119 Date Completed: 20241119 Latest Revision: 20241211
    • Publication Date:
      20241212
    • Accession Number:
      10.1007/s10661-024-13389-1
    • Accession Number:
      39560890