Contact toxicity of insecticides against rice weevil, Sitophilus oryzae L. and its effect on progeny production.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Post-harvest losses caused by insect pests, particularly the rice weevil, Sitophilus oryzae, pose a significant challenge in food storage facilities worldwide. To combat this pest, synthetic insecticides and fumigants are widely used. However, effective contact insecticides are scarce. Hence, the present study explored the alternatives by evaluating the contact toxicity of various insecticides against S. oryzae using glass, jute, and floor tiles as surface substrates and further examining the effect on progeny production of promising candidate insecticides. Among the insecticides tested, malathion exhibited the highest toxicity on glass and jute surfaces regardless of the exposure period. On the other hand, spinetoram proved to be the most effective on tile surface with an 8 h exposure period. Among the alternate insecticides (spinosad, spinetoram, chlorfenapyr and lambda-cyhalothrin), spinetoram was most effective with LC 50 values of 155.8 and 116.9 mg/m² for 4 h and 8 h exposure, respectively, on tile surface; 204.6 and 129.0 mg/m² for 4 h and 8 h exposure, respectively, on glass surface; and 271.5 and 199.5 mg/m² for 4 h and 8 h exposure, respectively, on jute surface. Relative toxicity assessments revealed spinetoram to be 2.11 and 2.51 times more effective than deltamethrin on tile surface for 4 and 8 h of exposure, respectively whereas it was 1.14 times more effective than malathion on tile surface at 8 h exposure. Principal component analysis indicated a higher demand for insecticide doses closely associated with the structural properties of surfaces, particularly evident with jute surfaces. Furthermore, the effect on adult mortality and progeny production by malathion, spinetoram, and lambda-cyhalothrin revealed malathion as the most effective insecticide followed by spinetoram. Carboxylesterase, acetylcholinesterase, and Glutathione S-transferase (GST) activities were notably higher in deltamethrin-treated insects compared to other insecticides. The studies concluded that spinetoram can be considered an alternative to conventional insecticides for the management of S. oryzae under different storage conditions.
      Competing Interests: Declarations Competing interests The authors declare no competing interests.
      (© 2024. The Author(s).)
    • References:
      Dohertry, E. M., Sun, Q. & Wilson, B. E.Stored rice varietal resistance towards Sitophilus oryzae. Crop Prot. 165, 106162. https://doi.org/10.1016/j.cropro.2022.106162 (2023). (PMID: 10.1016/j.cropro.2022.106162)
      Majd-Marani, S., Naseri, B., Hassanpour, M., Razmjou, J. & Jalaeian, M. Life history and life table parameters of the rice weevil, Sitophilus oryzae L.(Coleoptera: Curculionidae) fed on 10 rice cultivars and lines in Iran. J. Stored Prod. Res. 102, 102118. https://doi.org/10.1016/j.jspr.2023.102118 (2023). (PMID: 10.1016/j.jspr.2023.102118)
      CABI. Sitophilus oryzae (rice weevil), invasive species compendium datasheets (2017). https://www.cabi.org/isc/datasheet/10887.
      Park, I. K., Lee, S. G., Choi, D. H., Park, J. D. & Ahn, Y. J. Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L). J. Stored Prod. Res. 39, 375–384. https://doi.org/10.1111/j.1744-7348.1966.tb06862.x (2003). (PMID: 10.1111/j.1744-7348.1966.tb06862.x)
      Hardman, J. M. Environmental changes associated with the growth of populations of Sitophilus oryzae (L.) confined in small cells of wheat. J. Stored Prod. Res. 13, 45–52. https://doi.org/10.1016/0022-474X(77)90057-1 (1977). (PMID: 10.1016/0022-474X(77)90057-1)
      Hill, D. S. Pests of Stored Foodstuffs and Their Control (Springer Science & Business Media, 2002).
      Jian, F., Larson, R., Jayas, D. S. & White, N. D. Three-dimensional temporal and spatial distribution of adult Oryzaephilus surinamensis and Sitophilus oryzae in stored wheat under different temperatures, moisture contents, and adult densities. J. Stored Prod. Res. 49, 155–165. https://doi.org/10.1016/j.jspr.2012.01.001 (2012). (PMID: 10.1016/j.jspr.2012.01.001)
      Williams, P., Semple, R. L. & Amos, T. G. Relative toxicity and persistence of one carbamate and three organophosphate insecticides on concrete, wood and iron surfaces for control of grain insects. J. Entomol. Soc. Aust. N. S. W. 14, 35–40 (1982).
      Vassilakos, T. N., Athanassiou, C. G., Chloridis, A. S. & Dripps, J. E. Efficacy of spinetoram as a contact insecticide on different surfaces against stored-product beetle species. J. Pest Sci. 87, 485–494. https://doi.org/10.1007/s10340-014-0574-6 (2014). (PMID: 10.1007/s10340-014-0574-6)
      FCI. Training study material (Quality control). https://drive.google.com/file/d/1p1M50fXz2HUFvHcuiU1C1rZfHn3_boPK/view?usp=drive_link (2021).
      Daglish, G. J., Nayak, M. K. & Pavic, H. Phosphine resistance in Sitophilus oryzae (L.) from eastern Australia: inheritance, fitness and prevalence. J. Stored Prod. Res. 59, 237–244. https://doi.org/10.1016/j.jspr.2014.03.007 (2014). (PMID: 10.1016/j.jspr.2014.03.007)
      Nguyen, T. T., Collins, P. J., Duong, T. M., Schlipalius, D. I. & Ebert, P. R. Genetic conservation of phosphine resistance in the rice weevil Sitophilus oryzae (L). J. Hered. 107, 228–237. https://doi.org/10.1093/jhered/esw001 (2016). (PMID: 10.1093/jhered/esw001267740574885235)
      Collins, P. J., Lambkin, T. M., Bridgeman, B. W. & Pulvirenti, C. Resistance to grain-protectant insecticides in coleopterous pests of stored cereals in Queensland, Australia. J. Econ. Entomol. 86, 239–245. https://doi.org/10.1093/jee/86.2.239 (1993). (PMID: 10.1093/jee/86.2.239)
      Collins, P. J. A new resistance to pyrethroids in Tribolium castaneum (Herbst). Pestic Sci. 28, 101–115 (1990). (PMID: 10.1002/ps.2780280112)
      Arthur, F. H. Grain protectants: current status and prospects for the future. J. Stored Prod. Res. 132, 293–302. https://doi.org/10.1016/S0022-474X(96)00033-1 (1996). (PMID: 10.1016/S0022-474X(96)00033-1)
      Daglish, G. J. & Nayak, M. K. Potential of the neonicotinoid imidacloprid and the oxadiazine indoxacarb for controlling five coleopteran pests of stored grain. Insect Sci. 19, 96–101. https://doi.org/10.1111/j.1744-7917.2011.01430.x (2012). (PMID: 10.1111/j.1744-7917.2011.01430.x)
      Onstad, D. W. & Knolhoff, L. Insect Resistance Management: Biology, Economics, and Prediction (Academic, 2022).
      Leach, A. B., Hoepting, C. A. & Nault, B. A. Grower adoption of insecticide resistance management practices increase with extension based program. Pest Manag. Sci. 75, 515–526. https://doi.org/10.1002/ps.5150 (2019). (PMID: 10.1002/ps.515030047237)
      Vassilakos, T. N., Athanassiou, C. G. & Tsiropoulos, N. G. Influence of grain type on the efficacy of spinetoram for the control of Rhyzopertha dominica, Sitophilus granarius and Sitophilus oryzae. J. Stored Prod. Res. 64, 1–7. https://doi.org/10.1016/j.jspr.2015.02.002 (2015). (PMID: 10.1016/j.jspr.2015.02.002)
      Rumbos, C. I., Dutton, A. C. & Athanassiou, C. G. Insecticidal effect of spinetoram and thiamethoxam applied alone or in combination for the control of major stored-product beetle species. J. Stored Prod. Res. 75, 56–63. https://doi.org/10.1016/j.jspr.2017.10.004 (2018). (PMID: 10.1016/j.jspr.2017.10.004)
      Jankov, D. et al. Initial and residual efficacy of insecticides on different surfaces against rice weevil Sitophilus oryzae (L). J. Pest Sci. 86, 211–216. https://doi.org/10.1007/s10340-012-0469-3 (2014). (PMID: 10.1007/s10340-012-0469-3)
      Sparks, T. C. et al. Neural network-based QSAR and insecticide discovery: spinetoram. J. Comput. Aided Mol. 2, 393–401. https://doi.org/10.1007/s10822-008-9205-8 (2008). (PMID: 10.1007/s10822-008-9205-8)
      Jones, M. M., Robertson, J. L. & Weinzierl, R. A. Susceptibility of oriental fruit moth (Lepidoptera: Tortricidae) larvae to selected reduced-risk insecticides. J. Econ. Entomol. 103, 1815–1820. https://doi.org/10.1603/EC10029 (2010). (PMID: 10.1603/EC1002921061985)
      Toews, M. D., Subramanyam, B. & Rowan, J. M. Knockdown and mortality of adults of eight species of stored-product beetles exposed to four surfaces treated with spinosad. J. Econ. Entomol. 96(6), 1967–1973 (2003). https://doi.org/10.1093/jee/96.6.1967 (2003).
      Hertlein, M. B., Thompson, G. D., Subramanyam, B. & Athanassiou, C. G. Spinosad: a new natural product for stored grain protection. J. Stored Prod. Res. 47, 131–146. https://doi.org/10.1016/j.jspr.2011.01.004 (2011). (PMID: 10.1016/j.jspr.2011.01.004)
      Vassilakos, T. N., Athanassiou, C. G., Saglam, O., Chloridis, A. S. & Dripps, J. E. Insecticidal effect of spinetoram against six major stored grain insect species. J. Stored Prod. Res. 51, 69–73. https://doi.org/10.1016/j.jspr.2012.06.006 (2012). (PMID: 10.1016/j.jspr.2012.06.006)
      Vassilakos, T. N. & Athanassiou, C. G. Long-term residual efficacy of spinetoram on concrete and steel surfaces for the management of three stored product beetle species. J. Econ. Entomol. 108, 2090–2097. https://doi.org/10.1093/jee/tov088 (2015). (PMID: 10.1093/jee/tov08826470356)
      Andric, G. et al. Effectiveness of spinosad and spinetoram against three Sitophilus species: influence of wheat endosperm vitreousness. J. Stored Prod. Res. 83 https://doi.org/10.1016/j.jspr.2019.07.001 (2019). 209 – 17.
      Dripps, J. E. et al. The Spinosyn Insecticides (The Royal Society of Chemistry, 2011).
      Guedes, R. N. C. et al. Acute lethal and behavioral sublethal responses of two stored-product psocids to surface insecticides. Pest Manag. Sci. 64, 1314–1322. https://doi.org/10.1002/ps.1634 (2008). (PMID: 10.1002/ps.163418683906)
      Arthur, F. H. Dosage rate, temperature, and food source provisioning affect susceptibility of Tribolium castaneum and Tribolium confusum to chlorfenapyr. J. Pest Sci. 86, 507–513. https://doi.org/10.1007/s10340-013-0495-9 (2013). (PMID: 10.1007/s10340-013-0495-9)
      Arthur, F. H. Efficacy of chlorfenapyr against adult Tribolium castaneum exposed on concrete: effects of exposure interval, concentration and the presence of a food source after exposure. Insect Sci. 16, 157–163. https://doi.org/10.1111/j.1744-7917.2009.00267.x (2009). (PMID: 10.1111/j.1744-7917.2009.00267.x)
      Arthur, F. H. & Fontenot, E. A. Residual activity of methoprene and novaluron as surface treatments to manage the flour beetles, Tribolium castaneum and Tribolium confusum. J. Insect Sci. 12, 95. https://doi.org/10.1673/031.012.9501 (2012). (PMID: 10.1673/031.012.9501234218523596936)
      Arthur, F. H. Differential effectiveness of deltamethrin dust on plywood, concrete, and tile surfaces against three stored-product beetles. J. Stored Prod. Res. 33 https://doi.org/10.1016/S0022-474X(96)00041-0 (1997). 167 – 73.
      Arthur, F. H. Residual efficacy of cyfluthrin emulsifiable concentrate and wettable powder formulations on porous concrete and on concrete sealed with commercial products prior to insecticide application. J. Stored Prod. Res. 30 (1), 79–86. https://doi.org/10.1016/0022-474X(94)90276-3 (1994). (PMID: 10.1016/0022-474X(94)90276-3)
      Lampiri, E., Agrafioti, P. & Athanassiou, C. G. Insecticidal effect of three insecticides applied on different surfaces for the control of three stored-product beetle species. J. Stored Prod. Res. 101, 102087. https://doi.org/10.1016/j.jspr.2023.102087 (2023). (PMID: 10.1016/j.jspr.2023.102087)
      Shakoori, A. R., Mujeeb, K. A., Maqbool, S. & Ali, S. S. Relative activity of various esterases in six Pakistani strains of the lesser grain borer, Rhyzopertha dominica (Fabricius). Int. J. Trop. Insect Sci. 20 (3), 207–213. https://doi.org/10.1017/S1742758400019652 (2000). (PMID: 10.1017/S1742758400019652)
      Enayati, A. A., Ranson, H. & Hemingway, J. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol. 14 (1), 3–8. https://doi.org/10.1111/j.1365-2583.2004.00529.x (2005). (PMID: 10.1111/j.1365-2583.2004.00529.x15663770)
      Liu, N., Li, M., Gong, Y., Liu, F. & Li, T. Cytochrome P450s–Their expression, regulation, and role in insecticide resistance. Pestic Biochem. Physiol. 120, 77–81. https://doi.org/10.1016/j.pestbp.2015.01.006 (2015). (PMID: 10.1016/j.pestbp.2015.01.00625987224)
      Paudyal, S., Opit, G. P., Arthur, F. H., Bingham, G. V. & Gautam, S. G. Contact toxicity of deltamethrin against Tribolium castaneum (coleoptera: Tenebrionidae), Sitophilus oryzae (coleoptera: Curculionidae), and Rhyzopertha dominica (coleoptera: Bostrichidae) adults. J. Econ. Entomol. 109, 1936–1942. https://doi.org/10.1093/jee/tow107 (2016). (PMID: 10.1093/jee/tow10727270576)
      Swathikumari Studies on toxicity of certain insecticides to rice weevil Sitophilus oryzae (L.) (Curculionidae: Coleoptera). M. Sc. thesis submitted to ANGRAU (2009).
      Karimzadeh, R., Salehpoor, M. & Saber, M. Initial efficacy of pyrethroids, inert dusts, their low-dose combinations and low temperature on Oryzaephilus surinamensis and Sitophilus granarius. J. Stored Prod. Res. 91, 101780. https://doi.org/10.1016/j.jspr.2021.101780 (2021). (PMID: 10.1016/j.jspr.2021.101780)
      Kranthi, K. R. Insecticide Resistance: Monitoring. Mechanisms and Management Manual (Central Institute for Cotton Research, 2005).
      Habig, W. H., Pabst, M. J. & Jakoby, W. B. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. JBC 249, 7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8 (1974). (PMID: 10.1016/S0021-9258(19)42083-8)
      Ellman, G. L., Courtney, K. D., Andres Jr, V. & Featherstone, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7 (2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9 (1961). (PMID: 10.1016/0006-2952(61)90145-913726518)
      Abbott, W. S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925). (PMID: 10.1093/jee/18.2.265a)
      Finney, D. J. Probit Analysis 3rd edn, 333 (Cambridge University Press, 1971).
      Giga, D. P. & Canhao, J. Persistence of insecticide spray deposits on different surfaces against Prostephanus truncatus (Horn.) And Sitophilus zeamais (Motsch). Int. J. Trop. Insect Sci. 13, 755–762. https://doi.org/10.1017/S1742758400008055 (1992). (PMID: 10.1017/S1742758400008055)
      Arthur, F. H. Residual toxicity of cyfluthrin wettable powder against Tribolium confusum (Coleoptera: Tenebrionidae) exposed for short time intervals on concrete. J. Stored Prod. Res. 34, 19–25. https://doi.org/10.1016/S0022-474X(97)00037-4 (1998). (PMID: 10.1016/S0022-474X(97)00037-4)
      Vassilakos, T. N. & Athanassiou, C. G. Effect of short exposures to spinetoram against three stored-product beetle species. J. Econ. Entomol. 105, 1088–1094. https://doi.org/10.1603/EC11331 (2012a). (PMID: 10.1603/EC1133122812151)
      Vassilakos, T. N. & Athanassiou, C. G. Effect of uneven distribution of spinetoram-treated wheat and rice on mortality and progeny production of Rhyzopertha dominica (F.), Sitophilus oryzae (L.) and Tribolium confusum Jacquelin Du Val. J. Stored Prod. Res. 50, 73–80. https://doi.org/10.1016/j.jspr.2012.03.005 (2012b). (PMID: 10.1016/j.jspr.2012.03.005)
      Athanassiou, C. G., Kavallieratos, N. G., Arthur, F. H. & Trone, J. E. Residual efficacy of chlorfenapyr for control of stored-product psocids (Psocoptera). J. Econ. Entomol. 107, 854–859. https://doi.org/10.1603/EC13376 (2014). (PMID: 10.1603/EC1337624772570)
      Saglam, O., Athanassiou, C. G. & Vassilakos, T. N. Comparison of spinetoram, imidacloprid, thiamethoxam and chlorantraniliprole against life stages of Tribolium confusum Jacquelin Du Val (Coleoptera: Tenebrionidae) on concrete. Crop Prot. 53, 85–95. https://doi.org/10.1016/j.cropro.2013.05.007 (2013). (PMID: 10.1016/j.cropro.2013.05.007)
      Gharib, D., Tawfik, M. A. H., Mahgoub, S. M. & Fawki, S. Toxicity and residual efficacy of lambada-cyhalothrin insecticide applied on cement and polyethylene surfaces against Rhyzopertha dominica and Callosobruchus maculates. Egypt. Acad. J. Biol. 13 (1), 143–148. https://doi.org/10.21608/eajbsf.2021.152629 (2021). (PMID: 10.21608/eajbsf.2021.152629)
      Khalequzzaman, M. & Nahar, J. Toxicity of nine insecticides to adult Tribolium castaneum (Herbst). Online J. Biol. Sci. 1 (11), 1043–1045 (2001). (PMID: 10.3923/jbs.2001.1043.1045)
      Baliota, G., Rumbos, C. I. & Athanassiou, C. G. From lethality to mortality: investigating the grey area of knockdown as an efficacy indicator of different insecticides against major storage insects using a lethality index. J. Pest Sci. 91, 1371–1380. https://doi.org/10.1007/s10340-018-0983-z (2018). (PMID: 10.1007/s10340-018-0983-z)
      Velki, M., Plavsin, I., Dragojevic, J. & Hackenberger, B. K. Toxicity and repellency of dimethoate, pirimiphos-methyl and deltamethrin against Tribolium castaneum (Herbst) using different exposure methods. J. Stored Prod. Res.59, 36–41. (2014). https://doi.org/10.1016/j.jspr.2014.04.005 (2014).
      Parkin, E. A. The relative toxicity and persistence of insecticides applied as water dispersible powders against stored-product beetles. Ann. Appl. Biol. 57, 1–14. https://doi.org/10.1111/j.1744-7348.1966.tb06862.x (1966). (PMID: 10.1111/j.1744-7348.1966.tb06862.x5907925)
      Webley, D. J. & Kilminster, K. M. The persistence of insecticide spray deposits on woven polypropylene and jute sacking. Pestic Sci. 11, 667–673. https://doi.org/10.1002/ps.2780110615 (1980). (PMID: 10.1002/ps.2780110615)
      Doganay, I., Agrafioti, P., Isikber, A. A., Saglam, O. & Athanassiou, C. G. Immediate and delayed mortality of the larger grain borer, Prostephanus truncatus (Horn), on different surfaces treated with thiamethoxam and alpha-cypermethrin. J. Stored Prod. Res. 76, 1–6. https://doi.org/10.1016/j.jspr.2017.10.003 (2018). (PMID: 10.1016/j.jspr.2017.10.003)
      Tsaganou, F. K., Vassilakos, T. N. & Athanassiou, C. G. Knockdown-mortality responses of six stored-product beetle species on different surfaces treated with thiamethoxam, using a standardized lethality index. J. Stored Prod. Res. 114, 430–439. https://doi.org/10.1093/jee/toaa272 (2021). (PMID: 10.1093/jee/toaa272)
      Trdan, S. et al. Assessment of the efficacy of spinetoram and spinosad against adults of three Sitophilus species reared on four different winter wheat varieties. IOBC/WPRS Bull. 130, 258–263 (2018).
      Athanassiou, C. G. et al. Effect of temperature and commodity on insecticidal efficacy of spinosad dust against Sitophilus oryzae (Coleoptera: Curculionidae) and Rhyzopertha dominica (Coleoptera: Bostrychidae). J. Econ. Entomol. 101, 976–981. https://doi.org/10.1093/jee/101.3.976 (2008). (PMID: 10.1093/jee/101.3.97618613602)
      Athanassiou, C. G., Kavallieratos, N. G., Benelli, G. & Guedes, R. N. C. Male multiple matings and reproductive success in commodity-adapted strains of Sitophilus oryzae. J. Pest Sci. 91, 1073–1080. https://doi.org/10.1007/s10340-018-0977-x (2018). (PMID: 10.1007/s10340-018-0977-x)
      Fan, R., Fan, Z., Sun, Z., Chen, Y. & Gui, F. Insecticide susceptibility and detoxification enzyme activity of Frankiniella occidentalis under three habitat conditions. Insects 14 (7), 643. https://doi.org/10.3390/insects14070643 (2023). (PMID: 10.3390/insects140706433750465010380546)
      Mohan, M., Sushil, S. N. & Bhatt, J. C. The development of insecticide resistance and carboxylesterase activity in Helicoverpa armigera (Hubner) from Kumaon Himalayas. Pestic Res. J. 19, 220–225 (2007).
      Zhang, L. et al. Quantitative and qualitative changes of the carboxylesterase associated with beta cypermethrin resistance in the housefly Musca domestica Diptera:Muscidae. Comp. Biochem. Physiol. Biochem. Mol. Biol. 156, 6–11. https://doi.org/10.1016/j.cbpb.2010.01.011 (2010). (PMID: 10.1016/j.cbpb.2010.01.011)
      Nazar, M. Z. et al. Characteristics of biochemical resistance mechanism of novel insecticides in Phenacoccus Solenopsis Tinsley (Hemiptera: Pseudococcidae). Crop Prot. 138, 105320. https://doi.org/10.1016/j.cropro.2020.105320 (2020). (PMID: 10.1016/j.cropro.2020.105320)
      Kinareikina, A. G. & Silivanova, E. A. Acetylcholinesterase activities in adult houseflies Musca Domestica L. of the Chlorfenapyr-Resistant Strain. Entomol. Appl. Sci. Lett. 9 (3), 37–44. https://doi.org/10.51847/HGiT49D1SR (2022). (PMID: 10.51847/HGiT49D1SR)
      IGMRI. Indian Grain Storage Management and Research Institute, Hapur, UP. Retrieved from https://igmri.dfpd.gov.in/igmri/storage (2023).
    • Contributed Indexing:
      Keywords: Sitophilus oryzae; Contact insecticides; Exposure surface; Exposure time; Lethal concentration; Progeny production; Relative toxicity
    • Accession Number:
      0 (Insecticides)
      U5N7SU872W (Malathion)
      0 (Pyrethrins)
      0 (Nitriles)
    • Subject Terms:
      Sitophilus oryzae
    • Publication Date:
      Date Created: 20241118 Date Completed: 20241119 Latest Revision: 20241122
    • Publication Date:
      20241122
    • Accession Number:
      PMC11574040
    • Accession Number:
      10.1038/s41598-024-80157-z
    • Accession Number:
      39558054