Menu
×
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
Main Library
12 p.m. - 6 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 6 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 6 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 6 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 1 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 6 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. - 6 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. - 6 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 1 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 3 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 6 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 6 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 6 p.m.
Phone: (843) 795-6679
Main Library
12 p.m. - 6 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. - 6 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
AMP-Activated Protein Kinase Treatment Ameliorates Chronic Restraint Stress Induced Memory Impairment in Early Adolescent Rat by Restoring Metabolite Profile and Synaptic Proteins.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Rajan KE;Rajan KE; Nishanthini B; Nishanthini B; Sowndharya S; Sowndharya S
- Source:
Neurochemical research [Neurochem Res] 2024 Nov 18; Vol. 50 (1), pp. 19. Date of Electronic Publication: 2024 Nov 18.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 7613461 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-6903 (Electronic) Linking ISSN: 03643190 NLM ISO Abbreviation: Neurochem Res Subsets: MEDLINE
- Publication Information: Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press - Subject Terms: Stress, Psychological*/metabolism ; Stress, Psychological*/drug therapy ; Memory Disorders*/metabolism ; Memory Disorders*/drug therapy ; AMP-Activated Protein Kinases*/metabolism ; Aminoimidazole Carboxamide*/analogs & derivatives ; Aminoimidazole Carboxamide*/pharmacology ; Aminoimidazole Carboxamide*/metabolism ; Aminoimidazole Carboxamide*/therapeutic use; Animals ; Male ; Rats ; Brain-Derived Neurotrophic Factor/metabolism ; Restraint, Physical ; Ribonucleotides/pharmacology ; Rats, Sprague-Dawley ; Disks Large Homolog 4 Protein/metabolism ; Synapses/metabolism ; Synapses/drug effects
- Abstract: Recent studies highlight the role of brain metabolites in regulation of neuronal signals and behaviour. To understand the underlying mechanism, brain metabolites and associated signaling molecules were examined in early adolescent rat experienced CRS. Rats were tested for their learning and memory ability, and their metabolite profile was evaluated using Gas chromatography-mass spectrometry (GC-MS). Differences in metabolites were examined by variable importance in projection (VIP) and multivariate analysis. Ingenuity Pathway Analysis (IPA) and KEGG ID were performed for the identified metabolites. We found that CRS altered the metabolites that were involved in biosynthesis of steroid hormone, aminoacyl t-RNA, L-Dopa biosynthesis, and metabolism of tyrosine, fatty acid, and purine. Further analysis showed reduction of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR, a metabolite involved in purine metabolism) an AMP kinase activator, influenced the hypoxanthine-guanine phosphoribosyltransferase (HPRT), serotonin transporter (SERT), postsynaptic density protein (PSD) -95, its phosphorylation and brain-derived neurotrophic factor (BDNF) in CRS animals, which displayed deficit in memory. The AICAR treated CRS rats showed improved memory and altered metabolites and other molecules (HPRT, SERT, PSD-95 and BDNF) levels were restored. Our analysis revealed that CRS induced changes in metabolites possibly altered synaptic plasticity and memory in which HPRT, SERT-PSD95-BDNF associated pathway involved. Taken together, our observation provides initial insight into how stress differently influences the metabolic pathway, and associated behaviour. Further study will help to develop pharmacological intervention strategies.
Competing Interests: Declarations Ethical Approval The experimental protocol reviewed and approved by Institutional Animal Ethics Committee (Ref. No.: BDU/IAEC/P28/2024), assuring that the number of animals used was minimum. Competing Interests The authors declare no competing interests.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Maita I, Roepke TA, Samuels BA (2022) Chronic stress-induced synaptic changes to corticotropin-releasing factor-signaling in the bed nucleus of the stria terminalis. Front Behav Neurosci 16:903782. https://doi.org/10.3389/fnbeh.2022.903782. (PMID: 10.3389/fnbeh.2022.903782359834759378865)
Yang HL, Li MM, Zhou MF, Xu HS, Huan F, Liu N, Gao R, Wang J, Zhang N, Jiang L (2021) Links between gut dysbiosis and neurotransmitter disturbance in Chronic Restraint stress-Induced Depressive behaviours: the role of inflammation. Inflammation 44(6):2448–2462. https://doi.org/10.1007/s10753-021-01514-y. (PMID: 10.1007/s10753-021-01514-y34657991)
Quijije N (2015) Updates in the neuroendocrinology of stress and its clinical management. Curr Opin Endocrinol Diabetes Obes 22(4):319–324. https://doi.org/10.1097/med.0000000000000176. (PMID: 10.1097/med.000000000000017626087342)
Liu L, Zhou X, Zhang Y, Liu Y, Yang L, Pu J, Zhu D, Zhou C, Xie P (2016) The identification of metabolic disturbances in the prefrontal cortex of the chronic restraint stress rat model of depression. Behav Brain Res 305:148–156. https://doi.org/10.1016/j.bbr.2016.03.005. (PMID: 10.1016/j.bbr.2016.03.00526947756)
Kreitmaier P, Katsoula G, Zeggini E (2023) Insights from multi-omics integration in complex disease primary tissues. Trends Genet 39(1):46–58. https://doi.org/10.1016/j.tig.2022.08.005. (PMID: 10.1016/j.tig.2022.08.00536137835)
Mengelkoch S, Gassen J, Lev-Ari S, Alley JC, Schüssler-Fiorenza Rose SM, Snyder MP, Slavich GM (2024) Multi-omics in stress and health research: study designs that will drive the field forward. Stress 27(1):2321610. https://doi.org/10.1080/10253890.2024.2321610. (PMID: 10.1080/10253890.2024.23216103842510011216062)
Ni Y, Su M, Lin J, Wang X, Qiu Y, Zhao A, Chen T, Jia W (2008) Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Lett 582(17):2627–2636. https://doi.org/10.1016/j.febslet.2008.06.040. (PMID: 10.1016/j.febslet.2008.06.04018586036)
Fan L, Yang L, Li X, Teng T, Xiang Y, Liu X, Jiang Y, Zhu Y, Zhou X, Xie P (2021) Proteomic and metabolomic characterization of amygdala in chronic social defeat stress rats. Behav Brain Res 412:113407. https://doi.org/10.1016/j.bbr.2021.113407. (PMID: 10.1016/j.bbr.2021.11340734111472)
Teague CR, Dhabhar FS, Barton RH, Beckwith-Hall B, Powell J, Cobain M, Singer B, McEwen BS, Lindon JC, Nicholson JK, Holmes E (2007) Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. J Proteome Res 6(6):2080–2093. https://doi.org/10.1021/pr060412s. (PMID: 10.1021/pr060412s17474765)
Uchida T, Sugiura Y, Sugiyama E, Maeda R, Tanaka KF, Suematsu M, Mimura M, Uchida H (2023) Metabolites for monitoring symptoms and predicting remission in patients with depression who received electroconvulsive therapy: a pilot study. Sci Rep 13(1):13218. https://doi.org/10.1038/s41598-023-40498-7. (PMID: 10.1038/s41598-023-40498-73758052810425446)
Liu M, Ma W, He Y, Sun Z, Yang J (2023) Recent progress in Mass Spectrometry-based metabolomics in Major Depressive Disorder Research. Molecules 28(21):7430. https://doi.org/10.3390/molecules28217430. (PMID: 10.3390/molecules282174303795984910647556)
Berezhnoy G, Laske C, Trautwein C (2023) Metabolomic profiling of CSF and blood serum elucidates general and sex-specific patterns for mild cognitive impairment and Alzheimer’s disease patients. Front Aging Neurosci 15:1219718. https://doi.org/10.3389/fnagi.2023.1219718. (PMID: 10.3389/fnagi.2023.12197183769364910483152)
Giniatullin AR, Mukhutdinova KA, Petrov AM (2024) Mechanism of purinergic regulation of neurotransmission in Mouse Neuromuscular Junction: the role of Redox Signaling and lipid rafts. Neurochem Res 49(8):2021–2037. https://doi.org/10.1007/s11064-024-04153-5. (PMID: 10.1007/s11064-024-04153-538814360)
Guhathakurta D, Petrušková A, Akdaş EY, Perelló-Amorós B, Frischknecht R, Anni D, Weiss EM, Walter M, Fejtová A (2024) Hydroxynorketamine, but not ketamine, acts via α7 nicotinic acetylcholine receptor to control presynaptic function and gene expression. Transl Psychiatry 14(1):47. https://doi.org/10.1038/s41398-024-02744-y. (PMID: 10.1038/s41398-024-02744-y3825362210803733)
Grandjean J, Azzinnari D, Seuwen A, Sigrist H, Seifritz E, Pryce CR, Rudin M (2016) Chronic psychosocial stress in mice leads to changes in brain functional connectivity and metabolite levels comparable to human depression. NeuroImage 142:544–552. https://doi.org/10.1016/j.neuroimage.2016.08.013. (PMID: 10.1016/j.neuroimage.2016.08.01327520750)
Rasmusson AM, Pineles SL, Brown KD, Pinna G (2022) A role for deficits in GABAergic neurosteroids and their metabolites with NMDA receptor antagonist activity in the pathophysiology of posttraumatic stress disorder. J Neuroendocrinol 34(2):e13062. https://doi.org/10.1111/jne.13062. (PMID: 10.1111/jne.1306234962690)
Morales P, Simola N, Bustamante D, Lisboa F, Fiedler J, Gebicke-Haerter PJ, Morelli M, Tasker RA, Herrera-Marschitz M (2010) Nicotinamide prevents the long-term effects of perinatal asphyxia on apoptosis, non-spatial working memory and anxiety in rats. Exp Brain Res 202(1):1–14. https://doi.org/10.1007/s00221-009-2103-z. (PMID: 10.1007/s00221-009-2103-z20012537)
Leem YH, Chang H (2018) The ameliorating effect of exercise on long-term memory impairment and dendritic retraction via the mild activation of AMP-activated protein kinase in chronically stressed hippocampal CA1 neurons. J Exerc Nutr Biochem 22(3):35–41. https://doi.org/10.20463/jenb.2018.0022. (PMID: 10.20463/jenb.2018.0022)
Lautrup S, Sinclair DA, Mattson MP, Fang EF (2019) NAD + in Brain Aging and Neurodegenerative disorders. Cell Metab 30(4):630–655. https://doi.org/10.1016/j.cmet.2019.09.001. (PMID: 10.1016/j.cmet.2019.09.001315779336787556)
Song A, Cheng R, Jiang J, Qu H, Wu Z, Qian F, Shen S, Zhang L, Wang Z, Zhao W, Lou Y (2024) Antidepressant-like effects of hyperoside on chronic stress-induced depressive-like behaviors in mice: gut microbiota and short-chain fatty acids. J Affect Disord 354:356–367. https://doi.org/10.1016/j.jad.2024.03.017. (PMID: 10.1016/j.jad.2024.03.01738492650)
Sheibani V, Rajizadeh MA, Bejeshk MA, Haghparast E, Nozari M, Esmaeili-Mahani S, Nezhadi A (2022) The effects of neurosteroid allopregnanolone on synaptic dysfunction in the hippocampus in experimental parkinsonism rats: an electrophysiological and molecular study. Neuropeptides 92:102229. https://doi.org/10.1016/j.npep.2022.102229. (PMID: 10.1016/j.npep.2022.10222935158223)
Riggs LM, Pereira EFR, Thompson SM, Gould TD (2024) cAMP-dependent protein kinase signaling is required for (2R,6R)-hydroxynorketamine to potentiate hippocampal glutamatergic transmission. J Neurophysiol 131(1):64–74. https://doi.org/10.1152/jn.00326.2023. (PMID: 10.1152/jn.00326.202338050689)
Moreno-Martínez S, Tendilla-Beltrán H, Sandoval V, Flores G, Terrón JA (2022) Chronic restraint stress induces anxiety-like behavior and remodeling of dendritic spines in the central nucleus of the amygdala. Behav Brain Res 416:113523. https://doi.org/10.1016/j.bbr.2021.113523. (PMID: 10.1016/j.bbr.2021.11352334390801)
Dandi Ε, Spandou E, Dalla C, Tata DA (2023) Τhe neuroprotective role of environmental enrichment against behavioral, morphological, neuroendocrine and molecular changes following chronic unpredictable mild stress: a systematic review. Eur J Neurosci 58(4):3003–3025. https://doi.org/10.1111/ejn.16089. (PMID: 10.1111/ejn.1608937461295)
Porter GA, O’Connor JC (2021) Chronic unpredictable stress alters Brain Tryptophan Metabolism and impairs Working Memory in mice without causing Depression-Like Behaviour. Neurol Neurobiol (Tallinn) 4(3). https://doi.org/10.31487/j.nnb.2021.03.03.
Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10(6):423–433. https://doi.org/10.1038/nrn2651. (PMID: 10.1038/nrn265119469026)
McManus E, Haroon H, Duncan NW, Elliott R, Muhlert N (2022) The effects of stress across the lifespan on the brain, cognition and mental health: a UK biobank study. Neurobiol Stress 18:100447. https://doi.org/10.1016/j.ynstr.2022.100447. (PMID: 10.1016/j.ynstr.2022.100447356856799170771)
Huang L, Chen Y, Jin S, Lin L, Duan S, Si K, Gong W, Julius Zhu J (2021) Organizational principles of amygdalar input-output neuronal circuits. Mol Psychiatry 26(12):7118–7129. https://doi.org/10.1038/s41380-021-01262-3. (PMID: 10.1038/s41380-021-01262-3344007718873025)
Rajan KE (2021) Olfactory learning and memory in the greater short-nosed fruit bat Cynopterus sphinx: the influence of conspecifics distress calls. J Comp Physiol Neuroethol Sens Neural Behav Physiol 207(5):667–679. https://doi.org/10.1007/s00359-021-01505-2. (PMID: 10.1007/s00359-021-01505-2)
Padival MA, Blume SR, Vantrease JE, Rosenkranz JA (2015) Qualitatively different effect of repeated stress during adolescence on principal neuron morphology across lateral and basal nuclei of the rat amygdala. Neuroscience 291:128–145. https://doi.org/10.1016/j.neuroscience.2015.02.012. (PMID: 10.1016/j.neuroscience.2015.02.01225701125)
Višnjić D, Lalić H, Dembitz V, Tomić B, Smoljo T (2021) AICAr, a widely used AMPK activator with important AMPK-Independent effects: a systematic review. Cells 10(5):1095. https://doi.org/10.3390/cells10051095. (PMID: 10.3390/cells10051095340643638147799)
Coyral-Castel S, Tosca L, Ferreira G, Jeanpierre E, Rame C, Lomet D, Caraty A, Monget P, Chabrolle C, Dupont J (2008) The effect of AMP-activated kinase activation on gonadotrophin-releasing hormone secretion in GT1-7 cells and its potential role in hypothalamic regulation of the oestrous cyclicity in rats. J Neuroendocrinol 20(3):335–346. https://doi.org/10.1111/j.1365-2826.2007.01643.x. (PMID: 10.1111/j.1365-2826.2007.01643.x18194429)
Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24(4):417–463. https://doi.org/10.1016/s0149-7634(00)00014-2. (PMID: 10.1016/s0149-7634(00)00014-210817843)
Preethi J, Singh HK, Rajan KE (2016) Possible involvement of standardized Bacopa monniera extract (CDRI-08) in epigenetic regulation of reelin and brain-derived neurotrophic factor to enhance memory. Front Pharmacol 7:166. https://doi.org/10.3389/fphar.2016.00166. (PMID: 10.3389/fphar.2016.00166274458074921742)
Kamaladevi A, Rajan KE (2023) Antibiotic treatment during post-natal reverses behavioural and molecular alterations in experimental meningitis survivor rat model. Neurotoxicol Teratol 97:107178. https://doi.org/10.1016/j.ntt.2023.107178. (PMID: 10.1016/j.ntt.2023.10717837142063)
McIntyre CK, Hatfield T, McGaugh JL (2002) Amygdala norepinephrine levels after training predict inhibitory avoidance retention performance in rats. Eur J Neurosci 16(7):1223–1226. https://doi.org/10.1046/j.1460-9568.2002.02188.x. (PMID: 10.1046/j.1460-9568.2002.02188.x12405982)
McIntyre CK, Power AE, Roozendaal B, McGaugh JL (2003) Role of the basolateral amygdala in memory consolidation. Ann N Y Acad Sci 985. https://doi.org/10.1111/j.1749-6632.2003.tb07088.x .:273– 93.
Han RW, Xu HJ, Zhang RS, Wang P, Chang M, Peng YL, Deng KY, Wang R (2014) Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation. Neurobiol Learn Mem 107:32–36. https://doi.org/10.1016/j.nlm.2013.10.010. (PMID: 10.1016/j.nlm.2013.10.01024211255)
Zapala MA, Hovatta I, Ellison JA, Wodicka L, Del Rio JA, Tennant R, Tynan W, Broide RS, Helton R, Stoveken BS, Winrow C, Lockhart DJ, Reilly JF, Young WG, Bloom FE, Lockhart DJ, Barlow C (2005) Adult mouse brain gene expression patterns bear an embryologic imprint. Proc Natl Acad Sci U S A 102(29):10357–10362. https://doi.org/10.1073/pnas.0503357102. (PMID: 10.1073/pnas.0503357102160024701173363)
Sowndharya S, Rajan KE (2024) Environmental enrichment improves social isolation-induced memory impairment: the possible role of ITSN1-Reelin-AMPA receptor signaling pathway. PLoS ONE 19(1):e0294354. https://doi.org/10.1371/journal.pone.0294354. (PMID: 10.1371/journal.pone.02943543824123010798460)
Torrisi SA, Rizzo S, Laudani S, Ieraci A, Drago F, Leggio GM (2023) Acute stress alters recognition memory and AMPA/NMDA receptor subunits in a sex-dependent manner. Neurobiol Stress 25:100545. https://doi.org/10.1016/j.ynstr.2023.100545. (PMID: 10.1016/j.ynstr.2023.1005453729356110244889)
Bahari Z, Jangravi Z, Hatef B, Valipour H, Meftahi GH (2023) Creatine supplementation protects spatial memory and long-term potentiation against chronic restraint stress. Behav Pharmacol 34(6):330–339. https://doi.org/10.1097/fbp.0000000000000739. (PMID: 10.1097/fbp.000000000000073937462147)
Ghasemi SG, Khoshrou A, Kakhki S, Shirinzadeh Feizabadi A, Masoudi M, Bagherifar F, Beheshti F (2024) Ascorbic acid supplementation improves adolescent stress-induced cognitive impairment through restoration of behavioral, biochemical and electrophysiological alterations in male rats. Neuroscience 549:55–64. https://doi.org/10.1016/j.neuroscience.2024.04.012. (PMID: 10.1016/j.neuroscience.2024.04.01238718917)
Wang B, Chen SM, Yang SQ, Jiang JM, Zhang P, Zou W, Tang XQ (2024) GDF11 mediates H2 S to prevent chronic stress-induced cognitive impairment by reducing hippocampal NLRP3/caspase-1-dependent pyroptosis. J Affect Disord 344:600–611. https://doi.org/10.1016/j.jad.2023.10.040. (PMID: 10.1016/j.jad.2023.10.04037827256)
Pokrywka A, Cholbinski P, Kaliszewski P, Kowalczyk K, Konczak D, Zembron-Lacny A (2014) Metabolic modulators of the exercise response: doping control analysis of an agonist of the peroxisome proliferator-activated receptor δ (GW501516) and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). J Physiol Pharmacol 65(4):469–476. (PMID: 25179079)
Liu W, Zhai X, Li H, Ji L (2014) Depression-like behaviors in mice subjected to co-treatment of high-fat diet and corticosterone are ameliorated by AICAR and exercise. J Affect Disord 156:171–177. https://doi.org/10.1016/j.jad.2013.11.025. (PMID: 10.1016/j.jad.2013.11.02524388462)
Guerrieri D, van Praag H (2015) Exercise-mimetic AICAR transiently benefits brain function. Oncotarget 6(21):18293–18313. https://doi.org/10.18632/oncotarget.4715. (PMID: 10.18632/oncotarget.4715262869554621892)
Yu W, Chen L, Li X, Han T, Yang Y, Hu C, Yu W, Lü Y (20230 Alteration of Metabolic Profiles during the Progression of Alzheimer’s Disease. Brain Sci 13(10):1459. https://doi.org/10.3390/brainsci13101459.
Obut TA, Ovsyukova MV, Cherkasova OP (2004) Ratio between the contents of 11-dehydrocorticosterone and corticosterone after acute and repeated stress: effect of dehydroepiandrosterone sulfate. Bull Exp Biol Med 138(2):137–139. https://doi.org/10.1023/b:bebm.0000048370.47097.b0. (PMID: 10.1023/b:bebm.0000048370.47097.b015662454)
Standeven LR, Osborne LM, Betz JF, Yenokyan G, Voegtline K, Hantsoo L, Payne JL (2022) Allopregnanolone and depression and anxiety symptoms across the peripartum: an exploratory study. Arch Womens Ment Health 25(2):521–526. https://doi.org/10.1007/s00737-021-01186-5. (PMID: 10.1007/s00737-021-01186-534714413)
Tomaselli G, Vallée M (2019) Stress and drug abuse-related disorders: the promising therapeutic value of neurosteroids focus on pregnenolone-progesterone-allopregnanolone pathway. Front Neuroendocrinol 55:100789. https://doi.org/10.1016/j.yfrne.2019.100789. (PMID: 10.1016/j.yfrne.2019.10078931525393)
Gülpinar MA, Yegen BC (2004) The physiology of learning and memory: role of peptides and stress. Curr Protein Pept Sci 5(6):457–473. https://doi.org/10.2174/1389203043379341. (PMID: 10.2174/138920304337934115581416)
Hu Q, Shen P, Bai S, Dong M, Liang Z, Chen Z, Wang W, Wang H, Gui S, Li P, Xie P (2018) Metabolite-related antidepressant action of diterpene ginkgolides in the prefrontal cortex. Neuropsychiatr Dis Treat 14:999–1011. https://doi.org/10.2147/ndt.s161351. (PMID: 10.2147/ndt.s161351297131705907891)
Murray A, Tharmalingam S, Nguyen P, Tai TC (2021) Untargeted metabolomics reveals sex-specific differences in lipid metabolism of adult rats exposed to dexamethasone in utero. Sci Rep 11(1):20342. https://doi.org/10.1038/s41598-021-99598-x. (PMID: 10.1038/s41598-021-99598-x346458778514544)
Han B, Wang JH, Geng Y, Shen L, Wang HL, Wang YY, Wang MW (2017) Chronic stress contributes to cognitive dysfunction and hippocampal metabolic abnormalities in APP/PS1 mice. Cell Physiol Biochem 41(5):1766–1776. https://doi.org/10.1159/000471869. (PMID: 10.1159/00047186928365686)
Van Der Heyden JC, Rotteveel JJ, Wevers RA (2003) Decreased homovanillic acid concentrations in cerebrospinal fluid in children without a known defect in dopamine metabolism. Eur J Paediatr Neurol 7(1):31–37. https://doi.org/10.1016/s1090-3798(02)00137-x. (PMID: 10.1016/s1090-3798(02)00137-x12615172)
Kim J, Yang G, Kim Y, Kim J, Ha J (2016) AMPK activators: mechanisms of action and physiological activities. Exp Mol Med 48(4):e224. https://doi.org/10.1038/emm.2016.16. (PMID: 10.1038/emm.2016.16270340264855276)
Page T, Barshop B, Yu AL, Nyhan WL (1994) Treatment of Lesch-Nyhan syndrome with AICAR. Adv Exp Med Biol 370:353–356. https://doi.org/10.1007/978-1-4615-2584-4_76. (PMID: 10.1007/978-1-4615-2584-4_767660927)
Dunnett SB, Sirinathsinghji DJ, Heavens R, Rogers DC, Kuehn MR (1989) Monoamine deficiency in a transgenic (Hprt-) mouse model of Lesch-Nyhan syndrome. Brain Res 501(2):401–406. https://doi.org/10.1016/0006-8993(89)90659-8. (PMID: 10.1016/0006-8993(89)90659-82573408)
Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590. (PMID: 10.1038/nrd260518591979)
García MG, Puig JG, Torres RJ (2012) Adenosine, dopamine and serotonin receptors imbalance in lymphocytes of Lesch-Nyhan patients. J Inherit Metab Dis 35(6):1129–1135. https://doi.org/10.1007/s10545-012-9470-5. (PMID: 10.1007/s10545-012-9470-522403020)
Mukilan M, Rajathei DM, Jeyaraj E, Kayalvizhi N, Rajan KE (2018) MiR-132 regulated olfactory bulb proteins linked to olfactory learning in greater short-nosed fruit bat Cynopterus sphinx. Gene 671:10–20. https://doi.org/10.1016/j.gene.2018.05.107. (PMID: 10.1016/j.gene.2018.05.10729859284)
Müller HK, Wegener G, Elfving B (2012) Chronic restraint stress affects serotonin transporter uptake kinetics but not binding sites in the rat hippocampus. Synapse 66(3):270–272. https://doi.org/10.1002/syn.20986. (PMID: 10.1002/syn.2098621954049)
Chang J, Yang H, Shan X, Zhao L, Li Y, Zhang Z, Abankwah JK, Zhang M, Bian Y, Guo Y (2024) Bergamot essential oil improves CUMS-induced depression-like behaviour in rats by protecting the plasticity of hippocampal neurons. J Cell Mol Med 28(8):e18178. https://doi.org/10.1111/jcmm.18178. (PMID: 10.1111/jcmm.181783855396410980931)
Jung JTK, Marques LS, Brambila CA, da Cruz Weber Fulco B, Nogueira CW, Zeni G (2024) Social-single prolonged stress affects contextual fear conditioning in male and female Wistar rats: molecular insights in the amygdala. Prog Neuropsychopharmacol Biol Psychiatry 133:111021. https://doi.org/10.1016/j.pnpbp.2024.111021. (PMID: 10.1016/j.pnpbp.2024.11102138692472)
Hu X, Ballo L, Pietila L, Viesselmann C, Ballweg J, Lumbard D, Stevenson M, Merriam E, Dent EW (2011) BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions. J Neurosci 31(43):15597–15603. https://doi.org/10.1523/jneurosci.2445-11.2011. (PMID: 10.1523/jneurosci.2445-11.2011220319053224154)
Sha Z, Xu J, Li N, Li O (2023) Regulatory molecules of synaptic plasticity in anxiety disorder. Int J Gen Med 16:2877–2886. https://doi.org/10.2147/ijgm.s413176. (PMID: 10.2147/ijgm.s4131763743536510332425)
Hodges TE, Louth EL, Bailey CDC, McCormick CM (2019) Adolescent social instability stress alters markers of synaptic plasticity and dendritic structure in the medial amygdala and lateral septum in male rats. Brain Struct Funct 224(2):643–659. https://doi.org/10.1007/s00429-018-1789-8. (PMID: 10.1007/s00429-018-1789-830467598)
Wang S, Cai Q, Xu L, Sun Y, Wang M, Wang Y, Zhang L, Li K, Ni Z (2023) Isoalantolactone relieves depression-like behaviors in mice after chronic social defeat stress via the gut-brain axis. Psychopharmacology 240(8):1775–1787. https://doi.org/10.1007/s00213-023-06413-8. (PMID: 10.1007/s00213-023-06413-83740066110349788)
Mottarlini F, Rizzi B, Targa G, Buzzelli V, Di Trapano M, Rullo L, Candeletti S, Ciccocioppo R, Fattore L, Romualdi P, Fumagalli F, Trezza V, Caffino L (2024) Communal nesting shapes the sex-dependent glutamatergic response to early life stress in the rat prefrontal cortex. Front Psychiatry 15:1406687. https://doi.org/10.3389/fpsyt.2024.1406687. (PMID: 10.3389/fpsyt.2024.14066873883554311148342)
Yang X, Huang YA, Marshall J (2025) Targeting TrkB-PSD-95 coupling to mitigate neurological disorders. Neural Regen Res 20(3):715–724. https://doi.org/10.4103/nrr.nrr-d-23-02000. (PMID: 10.4103/nrr.nrr-d-23-0200038886937)
Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. https://doi.org/10.1124/pr.111.005108. (PMID: 10.1124/pr.111.005108224076163310485)
Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ (2019) Brain-derived neurotrophic factor in Brain disorders: Focus on Neuroinflammation. Mol Neurobiol 56(5):3295–3312. https://doi.org/10.1007/s12035-018-1283-6. (PMID: 10.1007/s12035-018-1283-630117106)
Wu J, Liu C, Zhang L, He B, Shi WP, Shi HL, Qin C (2021) Chronic restraint stress impairs cognition via modulating HDAC2 expression. Transl Neurosci 12(1):154–163. https://doi.org/10.1515/tnsci-2020-0168. (PMID: 10.1515/tnsci-2020-0168339869548090798)
Shi X, Zhou XZ, Chen G, Luo WF, Zhou C, He TJ, Naik MT, Jiang Q, Marshall J, Cao C (2024) Targeting the postsynaptic scaffolding protein PSD-95 enhances BDNF signaling to mitigate depression-like behaviors in mice. Sci Signal 17(834):eadn4556. https://doi.org/10.1126/scisignal.adn4556. (PMID: 10.1126/scisignal.adn45563868782611223518)
Wu Y, Zhu Z, Lan T, Li S, Li Y, Wang C, Feng Y, Mao X, Yu S (2024) Levomilnacipran improves Lipopolysaccharide-Induced dysregulation of synaptic plasticity and Depression-Like behaviors via activating BDNF/TrkB mediated PI3K/Akt/mTOR signaling pathway. Mol Neurobiol 61(7):4102–4115. https://doi.org/10.1007/s12035-023-03832-8. (PMID: 10.1007/s12035-023-03832-838057644) - Contributed Indexing: Keywords: AICAR; Chronic restraint stress; Gas chromatography; Learning and memory; Mass spectrometry; Metabolite; Serotonergic system
- Accession Number: EC 2.7.11.31 (AMP-Activated Protein Kinases)
360-97-4 (Aminoimidazole Carboxamide)
F0X88YW0YK (AICA ribonucleotide)
0 (Brain-Derived Neurotrophic Factor)
0 (Ribonucleotides)
0 (Bdnf protein, rat)
0 (Disks Large Homolog 4 Protein) - Publication Date: Date Created: 20241118 Date Completed: 20241118 Latest Revision: 20241118
- Publication Date: 20241118
- Accession Number: 10.1007/s11064-024-04285-8
- Accession Number: 39556261
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.