Menu
×
John's Island Library
Closed
Phone: (843) 559-1945
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
John's Island Library
Closed
Phone: (843) 559-1945
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Psychoneuroimmunology of Mood Disorders.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Teixeira AL;Teixeira AL; Scholl JN; Scholl JN; Bauer ME; Bauer ME
- Source:
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2025; Vol. 2868, pp. 49-72.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
- Publication Information: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press, - Subject Terms:
- Abstract: Recent research has shed light on the intricate relationship between mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BD), and inflammation. This chapter explores the complex interplay involving immune and metabolic dysfunction in the pathophysiology of these disorders, emphasizing their association with autoimmunity/inflammatory conditions, chronic low-grade systemic inflammation, T cell overactivation, and immunosenescence. This perspective underscores the notion that MDD and BD are not solely brain disorders, highlighting their nature as multi-system conditions.
(© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Malhi GS, Mann JJ (2018) Depression. Lancet 392:2299–2312. (PMID: 3039651210.1016/S0140-6736(18)31948-2)
Collaborators GBDMD (2022) Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9:137–150. (PMID: 10.1016/S2215-0366(21)00395-3)
Ghaemi SN (2022) Symptomatic versus disease-modifying effects of psychiatric drugs. Acta Psychiatr Scand 146:251–257. (PMID: 3565311110.1111/acps.13459)
Baldessarini RJ, Vazquez GH, Tondo L (2020) Bipolar depression: a major unsolved challenge. Int J Bipolar Disord 8:1. (PMID: 31903509694309810.1186/s40345-019-0160-1)
Bauer ME, Teixeira AL (2019) Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci 1437:57–67. (PMID: 2975271010.1111/nyas.13712)
Bennett JM, Reeves G, Billman GE et al (2018) Inflammation-nature’s way to efficiently respond to all types of challenges: implications for understanding and managing “the epidemic” of chronic diseases. Front Med (Lausanne) 5:316. (PMID: 3053898710.3389/fmed.2018.00316)
Slavich GM (2015) Understanding inflammation, its regulation, and relevance for health: a top scientific and public priority. Brain Behav Immun 45:13–14. (PMID: 2544957610.1016/j.bbi.2014.10.012)
Furman D, Campisi J, Verdin E et al (2019) Chronic inflammation in the etiology of disease across the life span. Nat Med 25:1822–1832. (PMID: 31806905714797210.1038/s41591-019-0675-0)
Teixeira ALB, Moises E (2018) Immunopsychiatry: a clinician’s introduction to the immune basis of mental disorders. Oxford University Press. (PMID: 10.1093/med/9780190884468.001.0001)
Teixeira AL, Colpo GD, Fries GR et al (2019) Biomarkers for bipolar disorder: current status and challenges ahead. Expert Rev Neurother 19:67–81. (PMID: 3045154610.1080/14737175.2019.1550361)
Teixeira AL, Martins LB, Berk M et al (2022) Severe psychiatric disorders and general medical comorbidities: inflammation-related mechanisms and therapeutic opportunities. Clin Sci (Lond) 136:1257–1280. (PMID: 3606241810.1042/CS20211106)
Martins LB, Braga Tibaes JR, Berk M et al (2022) Diabetes and mood disorders: shared mechanisms and therapeutic opportunities. Int J Psychiatry Clin Pract 26:183–195. (PMID: 3434855710.1080/13651501.2021.1957117)
Colpo GD, Leboyer M, Dantzer R et al (2018) Immune-based strategies for mood disorders: facts and challenges. Expert Rev Neurother 18:139–152. (PMID: 2917958510.1080/14737175.2018.1407242)
Barbosa IG, Machado-Vieira R, Soares JC et al (2014) The immunology of bipolar disorder. Neuroimmunomodulation 21:117–122. (PMID: 2455704410.1159/000356539)
Teixeira AL, Muller N (2014) Immunology of psychiatric disorders. Neuroimmunomodulation 21:71. (PMID: 2455703710.1159/000356525)
Sayana P, Colpo GD, Simoes LR et al (2017) A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients. J Psychiatr Res 92:160–182. (PMID: 2845814110.1016/j.jpsychires.2017.03.018)
Bauer ME, Teixeira AL (2021) Neuroinflammation in mood disorders: role of regulatory immune cells. Neuroimmunomodulation 28:99–107. (PMID: 3395164310.1159/000515594)
Fries GR, Walss-Bass C, Bauer ME et al (2019) Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav 177:12–19. (PMID: 3058655910.1016/j.pbb.2018.12.006)
Dantzer R, O’Connor JC, Freund GG et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56. (PMID: 18073775291927710.1038/nrn2297)
Dunn AJ, Swiergiel AH, de Beaurepaire R (2005) Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev 29:891–909. (PMID: 1588577710.1016/j.neubiorev.2005.03.023)
Czerniawski J, Miyashita T, Lewandowski G et al (2015) Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun 44:159–166. (PMID: 2545161210.1016/j.bbi.2014.09.014)
Merali Z, Brennan K, Brau P et al (2003) Dissociating anorexia and anhedonia elicited by interleukin-1beta: antidepressant and gender effects on responding for “free chow” and “earned” sucrose intake. Psychopharmacology 165:413–418. (PMID: 1245992710.1007/s00213-002-1273-1)
Reichenberg A, Yirmiya R, Schuld A et al (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452. (PMID: 1134352310.1001/archpsyc.58.5.445)
Steptoe A, Hamer M, Chida Y (2007) The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun 21:901–912. (PMID: 1747544410.1016/j.bbi.2007.03.011)
Miller AH, Haroon E, Raison CL et al (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30:297–306. (PMID: 23468190414187410.1002/da.22084)
Mehdi S, Wani SUD, Krishna KL et al (2023) A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation. Biochem Biophys Rep 36:101571. (PMID: 3796506610641573)
Rosenblat JD, McIntyre RS (2017) Bipolar disorder and immune dysfunction: epidemiological findings, proposed pathophysiology and clinical implications. Brain Sci 7:144. (PMID: 29084144570415110.3390/brainsci7110144)
Solmi M, Suresh Sharma M, Osimo EF et al (2021) Peripheral levels of C-reactive protein, tumor necrosis factor-alpha, interleukin-6, and interleukin-1beta across the mood spectrum in bipolar disorder: a meta-analysis of mean differences and variability. Brain Behav Immun 97:193–203. (PMID: 3433204110.1016/j.bbi.2021.07.014)
Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21:1696–1709. (PMID: 26903267605617410.1038/mp.2016.3)
Zhang Y, Wang J, Ye Y et al (2023) Peripheral cytokine levels across psychiatric disorders: a systematic review and network meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry 125:110740. (PMID: 10.1016/j.pnpbp.2023.110740)
Cakici N, Sutterland AL, Penninx B et al (2020) Altered peripheral blood compounds in drug-naive first-episode patients with either schizophrenia or major depressive disorder: a meta-analysis. Brain Behav Immun 88:547–558. (PMID: 3233059210.1016/j.bbi.2020.04.039)
Halstead S, Siskind D, Amft M et al (2023) Alteration patterns of peripheral concentrations of cytokines and associated inflammatory proteins in acute and chronic stages of schizophrenia: a systematic review and network meta-analysis. Lancet Psychiatry 10:260–271. (PMID: 3686338410.1016/S2215-0366(23)00025-1)
Osimo EF, Pillinger T, Rodriguez IM et al (2020) Inflammatory markers in depression: a meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun 87:901–909. (PMID: 32113908732751910.1016/j.bbi.2020.02.010)
Eyre HA, Air T, Pradhan A et al (2016) A meta-analysis of chemokines in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 68:1–8. (PMID: 10.1016/j.pnpbp.2016.02.006)
Barbosa IG, Bauer ME, Machado-Vieira R et al (2014) Cytokines in bipolar disorder: paving the way for neuroprogression. Neural Plast 2014:360481. (PMID: 25313338417287310.1155/2014/360481)
Ermakov EA, Mednova IA, Boiko AS et al (2023) Chemokine dysregulation and Neuroinflammation in schizophrenia: a systematic review. Int J Mol Sci 24.
Wang AK, Miller BJ (2018) Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr Bull 44:75–83. (PMID: 2833895410.1093/schbul/sbx035)
Thomas R (2005) The TRAF6-NF kappa B signaling pathway in autoimmunity: not just inflammation. Arthritis Res Ther 7:170–173. (PMID: 15987501117505010.1186/ar1784)
Brietzke E, Stertz L, Fernandes BS et al (2009) Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord 116:214–217. (PMID: 1925132410.1016/j.jad.2008.12.001)
Rowland T, Perry BI, Upthegrove R et al (2018) Neurotrophins, cytokines, oxidative stress mediators and mood state in bipolar disorder: systematic review and meta-analyses. Br J Psychiatry 213:514–525. (PMID: 30113291642926110.1192/bjp.2018.144)
Guloksuz S, Altinbas K, Aktas Cetin E et al (2012) Evidence for an association between tumor necrosis factor-alpha levels and lithium response. J Affect Disord 143:148–152. (PMID: 2274915510.1016/j.jad.2012.04.044)
Valkanova V, Ebmeier KP, Allan CL (2013) CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150:736–744. (PMID: 2387042510.1016/j.jad.2013.06.004)
Raison CL, Rutherford RE, Woolwine BJ et al (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70:31–41. (PMID: 22945416401534810.1001/2013.jamapsychiatry.4)
Hirschfeld RM (2014) Differential diagnosis of bipolar disorder and major depressive disorder. J Affect Disord 169(Suppl 1):S12–S16. (PMID: 2553390910.1016/S0165-0327(14)70004-7)
Yatham LN, Kennedy SH, Parikh SV et al (2013) Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord 15:1–44. (PMID: 2323706110.1111/bdi.12025)
Chen MH, Chang WC, Hsu JW et al (2019) Correlation of proinflammatory cytokines levels and reduced gray matter volumes between patients with bipolar disorder and unipolar depression. J Affect Disord 245:8–15. (PMID: 3035981010.1016/j.jad.2018.10.106)
Mota R, Gazal M, Acosta BA et al (2013) Interleukin-1beta is associated with depressive episode in major depression but not in bipolar disorder. J Psychiatr Res 47:2011–2014. (PMID: 2407451610.1016/j.jpsychires.2013.08.020)
do Prado CH, Rizzo LB, Wieck A et al (2013) Reduced regulatory regulatory T cells are associated with higher levels of Th1/TH17 cytokines and activated MAPK in type 1 bipolar disorder. Psychoneuroendocrinology 38:667–676. (PMID: 2298947610.1016/j.psyneuen.2012.08.005)
Ding M, Xueqin S, Zhao J et al (2014) Activation of Th17 cells in drug naïve, first episode schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 51.
Boufidou F, Nikolaou C, Alevizos B et al (2004) Cytokine production in bipolar affective disorder patients under lithium treatment. J Affect Disord 82:309–313. (PMID: 1548826310.1016/j.jad.2004.01.007)
Liu HC, Yang YY, Chou YM, Chen KP, Shen WW, Leu SJ (2004) Immunologic variables in acute mania of bipolar disorder. J Neuroimmunol 150:116–122. (PMID: 1508125510.1016/j.jneuroim.2004.01.006)
Knijff EM, Breunis MN, Kupka RW et al (2007) An imbalance in the production of IL-1beta and IL-6 by monocytes of bipolar patients: restoration by lithium treatment. Bipolar Disord 9:743–753. (PMID: 1798836510.1111/j.1399-5618.2007.00444.x)
Snijders G, Schiweck C, Mesman E et al (2016) A dynamic course of T cell defects in individuals at risk for mood disorders. Brain Behav Immun 58:11–17. (PMID: 2718117810.1016/j.bbi.2016.05.007)
O’Neill LA, Kishton RJ, Rathmell J (2016) A guide to immunometabolism for immunologists. Nat Rev Immunol 16:553–565. (PMID: 27396447500191010.1038/nri.2016.70)
Lacourt TE, Vichaya EG, Chiu GS et al (2018) The high costs of low-grade inflammation: persistent fatigue as a consequence of reduced cellular-energy availability and non-adaptive energy expenditure. Front Behav Neurosci 12:78. (PMID: 29755330593218010.3389/fnbeh.2018.00078)
Kominsky DJ, Campbell EL, Colgan SP (2010) Metabolic shifts in immunity and inflammation. J Immunol 184:4062–4068. (PMID: 2036828610.4049/jimmunol.0903002)
McGettrick AF, O’Neill LA (2013) How metabolism generates signals during innate immunity and inflammation. J Biol Chem 288:22893–22898. (PMID: 23798679374346810.1074/jbc.R113.486464)
Liu TF, Vachharajani VT, Yoza BK et al (2012) NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J Biol Chem 287:25758–25769. (PMID: 22700961340666310.1074/jbc.M112.362343)
Michalek RD, Gerriets VA, Jacobs SR et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303. (PMID: 2131738910.4049/jimmunol.1003613)
Sinha K, Das J, Pal PB et al (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180. (PMID: 2354300910.1007/s00204-013-1034-4)
Fuhrmann DC, Brune B (2017) Mitochondrial composition and function under the control of hypoxia. Redox Biol 12:208–215. (PMID: 28259101533353310.1016/j.redox.2017.02.012)
Allen J, Caruncho HJ, Kalynchuk LE (2021) Severe life stress, mitochondrial dysfunction, and depressive behavior: a pathophysiological and therapeutic perspective. Mitochondrion 56:111–117. (PMID: 3322050110.1016/j.mito.2020.11.010)
Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819. (PMID: 1685772010.1113/expphysiol.2006.033506)
Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665. (PMID: 21323543393092810.1056/NEJMra0910283)
de Pablos RM, Herrera AJ, Espinosa-Oliva AM et al (2014) Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. J Neuroinflammation 11:34. (PMID: 24565378394179910.1186/1742-2094-11-34)
Gardner A, Johansson A, Wibom R et al (2003) Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 76:55–68. (PMID: 1294393410.1016/S0165-0327(02)00067-8)
Karabatsiakis A, Bock C, Salinas-Manrique J et al (2014) Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression. Transl Psychiatry 4:e397. (PMID: 26126180408032510.1038/tp.2014.44)
Buck MD, Sowell RT, Kaech SM et al (2017) Metabolic instruction of immunity. Cell 169:570–586. (PMID: 28475890564802110.1016/j.cell.2017.04.004)
Voss K, Hong HS, Bader JE et al (2021) A guide to interrogating immunometabolism. Nat Rev Immunol 21:637–652. (PMID: 33859379847871010.1038/s41577-021-00529-8)
Schmidt CA, Fisher-Wellman KH, Neufer PD (2021) From OCR and ECAR to energy: perspectives on the design and interpretation of bioenergetics studies. J Biol Chem 297:101140. (PMID: 34461088847925610.1016/j.jbc.2021.101140)
Purohit V, Wagner A, Yosef N et al (2022) Systems-based approaches to study immunometabolism. Cell Mol Immunol 19:409–420. (PMID: 35121805889130210.1038/s41423-021-00783-9)
Yoshioka K, Takahashi H, Homma T et al (1996) A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta 1289:5–9. (PMID: 860523110.1016/0304-4165(95)00153-0)
Palmer CS, Anzinger JJ, Butterfield TR et al (2016) A simple flow cytometric method to measure glucose uptake and glucose transporter expression for monocyte subpopulations in whole blood. J Vis Exp.
Thumser AE, Storch J (2007) Characterization of a BODIPY-labeled fluorescent fatty acid analogue. Binding to fatty acid-binding proteins, intracellular localization, and metabolism. Mol Cell Biochem 299:67–73. (PMID: 1664572610.1007/s11010-005-9041-2)
Palsson-McDermott EM, O’Neill LAJ (2020) Targeting immunometabolism as an anti-inflammatory strategy. Cell Res 30:300–314. (PMID: 32132672711808010.1038/s41422-020-0291-z)
Shibata T, Yamagata H, Uchida S et al (2013) The alteration of hypoxia inducible factor-1 (HIF-1) and its target genes in mood disorder patients. Prog Neuro-Psychopharmacol Biol Psychiatry 43:222–229. (PMID: 10.1016/j.pnpbp.2013.01.003)
Gamradt S, Hasselmann H, Taenzer A et al (2021) Reduced mitochondrial respiration in T cells of patients with major depressive disorder. iScience 24:103312. (PMID: 34765928857149210.1016/j.isci.2021.103312)
Lago SG, Tomasik J, van Rees GF et al (2021) Exploring cellular markers of metabolic syndrome in peripheral blood mononuclear cells across the neuropsychiatric spectrum. Brain Behav Immun 91:673–682. (PMID: 3289863610.1016/j.bbi.2020.07.043)
Zaki JK, Lago SG, Rustogi N et al (2022) Diagnostic model development for schizophrenia based on peripheral blood mononuclear cell subtype-specific expression of metabolic markers. Transl Psychiatry 12:457. (PMID: 36310155961857010.1038/s41398-022-02229-w)
Pan A, Keum N, Okereke OI et al (2012) Bidirectional association between depression and metabolic syndrome: a systematic review and meta-analysis of epidemiological studies. Diabetes Care 35:1171–1180. (PMID: 22517938332984110.2337/dc11-2055)
Bhowmik B, Afsana F, Siddiquee T et al (2015) Comparison of the prevalence of metabolic syndrome and its association with diabetes and cardiovascular disease in the rural population of Bangladesh using the modified National Cholesterol Education Program Expert Panel Adult Treatment Panel III and International Diabetes Federation definitions. J Diabetes Investig 6:280–288. (PMID: 2596971210.1111/jdi.12268)
Ernst J, Hock A, Henning A et al (2017) Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder. Mol Psychiatry 22:113–119. (PMID: 2718412310.1038/mp.2016.73)
Kuang H, Duong A, Jeong H et al (2018) Lactate in bipolar disorder: a systematic review and meta-analysis. Psychiatry Clin Neurosci 72:546–555. (PMID: 2972606810.1111/pcn.12671)
Yoshimi N, Futamura T, Bergen SE et al (2016) Cerebrospinal fluid metabolomics identifies a key role of isocitrate dehydrogenase in bipolar disorder: evidence in support of mitochondrial dysfunction hypothesis. Mol Psychiatry 21:1504–1510. (PMID: 26782057507885410.1038/mp.2015.217)
Lam XJ, Xu B, Yeo PL et al (2023) Mitochondria dysfunction and bipolar disorder: from pathology to therapy. IBRO Neurosci Rep 14:407–418. (PMID: 373884951030048910.1016/j.ibneur.2023.04.002)
Zuccoli GS, Saia-Cereda VM, Nascimento JM et al (2017) The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front Neurosci 11:493. (PMID: 28936160559440610.3389/fnins.2017.00493)
Zheng P, Fang Z, Xu XJ et al (2016) Metabolite signature for diagnosing major depressive disorder in peripheral blood mononuclear cells. J Affect Disord 195:75–81. (PMID: 2687424410.1016/j.jad.2016.02.008)
Sun XL, Ma LN, Chen ZZ et al (2023) Search for serum biomarkers in patients with bipolar disorder and major depressive disorder using metabolome analysis. Front Psych 14:1251955. (PMID: 10.3389/fpsyt.2023.1251955)
Yoshimi N, Futamura T, Kakumoto K et al (2016) Blood metabolomics analysis identifies abnormalities in the citric acid cycle, urea cycle, and amino acid metabolism in bipolar disorder. BBA Clin 5:151–158. (PMID: 27114925483212410.1016/j.bbacli.2016.03.008)
Caslin HL, Abebayehu D, Pinette JA et al (2021) Lactate is a metabolic mediator that shapes immune cell fate and function. Front Physiol 12:688485. (PMID: 34733170855825910.3389/fphys.2021.688485)
Mills EL, Kelly B, O’Neill LAJ (2017) Mitochondria are the powerhouses of immunity. Nat Immunol 18:488–498. (PMID: 2841838710.1038/ni.3704)
Bansal Y, Kuhad A (2016) Mitochondrial dysfunction in depression. Curr Neuropharmacol 14:610–618. (PMID: 26923778498174010.2174/1570159X14666160229114755)
Song Y, Cao H, Zuo C et al (2023) Mitochondrial dysfunction: a fatal blow in depression. Biomed Pharmacother 167:115652. (PMID: 3780190310.1016/j.biopha.2023.115652)
Kato T (2017) Neurobiological basis of bipolar disorder: mitochondrial dysfunction hypothesis and beyond. Schizophr Res 187:62–66. (PMID: 2783991310.1016/j.schres.2016.10.037)
Martins-de-Souza D, Guest PC, Harris LW et al (2012) Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Transl Psychiatry 2:e87. (PMID: 22832852330953410.1038/tp.2012.13)
Hroudova J, Fisar Z, Hansikova H et al (2019) Mitochondrial dysfunction in blood platelets of patients with manic episode of bipolar disorder. CNS Neurol Disord Drug Targets 18:222–231. (PMID: 3058248610.2174/1871527318666181224130011)
Hroudova J, Fisar Z, Kitzlerova E et al (2013) Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 13:795–800. (PMID: 2368890510.1016/j.mito.2013.05.005)
Cataldo AM, McPhie DL, Lange NT et al (2010) Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am J Pathol 177:575–585. (PMID: 20566748291334410.2353/ajpath.2010.081068)
Garbett KA, Vereczkei A, Kalman S et al (2015) Fibroblasts from patients with major depressive disorder show distinct transcriptional response to metabolic stressors. Transl Psychiatry 5:e523. (PMID: 25756806435434510.1038/tp.2015.14)
Kuffner K, Triebelhorn J, Meindl K et al (2020) Major depressive disorder is associated with impaired mitochondrial function in skin fibroblasts. Cells 9:884. (PMID: 32260327722672710.3390/cells9040884)
Scaini G, Fries GR, Valvassori SS et al (2017) Perturbations in the apoptotic pathway and mitochondrial network dynamics in peripheral blood mononuclear cells from bipolar disorder patients. Transl Psychiatry 7:e1111. (PMID: 28463235553495110.1038/tp.2017.83)
Gimenez-Palomo A, Guitart-Mampel M, Meseguer A et al (2024) Reduced mitochondrial respiratory capacity in patients with acute episodes of bipolar disorder: could bipolar disorder be a state-dependent mitochondrial disease? Acta Psychiatr Scand 149:52–64. (PMID: 3803013610.1111/acps.13635)
Caliyurt O, Altiay G (2009) Resting energy expenditure in manic episode. Bipolar Disord 11:102–106. (PMID: 1913397310.1111/j.1399-5618.2008.00649.x)
Baxter LR, Phelps ME, Mazziotta JC et al (1985) Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 42:441–447. (PMID: 387264910.1001/archpsyc.1985.01790280019002)
Beech RD, Lowthert L, Leffert JJ et al (2010) Increased peripheral blood expression of electron transport chain genes in bipolar depression. Bipolar Disord 12:813–824. (PMID: 21176028307607210.1111/j.1399-5618.2010.00882.x)
Valvassori SS, Bavaresco DV, Feier G et al (2018) Increased oxidative stress in the mitochondria isolated from lymphocytes of bipolar disorder patients during depressive episodes. Psychiatry Res 264:192–201. (PMID: 2965334810.1016/j.psychres.2018.03.089)
de Sousa RT, Streck EL, Zanetti MV et al (2015) Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes. Psychopharmacology 232:245–250. (PMID: 2496156310.1007/s00213-014-3655-6)
Akarsu S, Torun D, Erdem M et al (2015) Mitochondrial complex I and III mRNA levels in bipolar disorder. J Affect Disord 184:160–163. (PMID: 2609382810.1016/j.jad.2015.05.060)
Nierenberg AA, Kansky C, Brennan BP et al (2013) Mitochondrial modulators for bipolar disorder: a pathophysiologically informed paradigm for new drug development. Aust N Z J Psychiatry 47:26–42. (PMID: 2271188110.1177/0004867412449303)
Fernstrom J, Mellon SH, McGill MA et al (2021) Blood-based mitochondrial respiratory chain function in major depression. Transl Psychiatry 11:593. (PMID: 34789750859947310.1038/s41398-021-01723-x)
Sarandol A, Sarandol E, Eker SS et al (2007) Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 22:67–73. (PMID: 1729981010.1002/hup.829)
Brown NC, Andreazza AC, Young LT (2014) An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res 218:61–68. (PMID: 2479403110.1016/j.psychres.2014.04.005)
Brasanac J, Gamradt S, Otte C et al (2022) Cellular specificity of mitochondrial and immunometabolic features in major depression. Mol Psychiatry 27:2370–2371. (PMID: 35181755913561810.1038/s41380-022-01473-2)
Culmsee C, Michels S, Scheu S et al (2018) Mitochondria, microglia, and the immune system-how are they linked in affective disorders? Front Psych 9:739. (PMID: 10.3389/fpsyt.2018.00739)
Mortaz E, Alipoor SD, Adcock IM et al (2018) Update on neutrophil function in severe inflammation. Front Immunol 9:2171. (PMID: 30356867619089110.3389/fimmu.2018.02171)
Gibson PH, Cuthbertson BH, Croal BL et al (2010) Usefulness of neutrophil/lymphocyte ratio as predictor of new-onset atrial fibrillation after coronary artery bypass grafting. Am J Cardiol 105:186–191. (PMID: 2010291610.1016/j.amjcard.2009.09.007)
Sourlingas TG, Issidorides MR, Havaki S et al (1998) Peripheral blood lymphocytes of bipolar affective patients have a histone synthetic profile indicative of an active cell state. Prog Neuro-Psychopharmacol Biol Psychiatry 22:81–96. (PMID: 10.1016/S0278-5846(97)00181-4)
Cassidy F, Wilson WH, Carroll BJ (2002) Leukocytosis and hypoalbuminemia in mixed bipolar states: evidence for immune activation. Acta Psychiatr Scand 105:60–64. (PMID: 1208622710.1034/j.1600-0447.2002.0_435.x)
Sørensen NV, Frandsen BH, Orlovska-Waast S et al (2022) Immune cell composition in unipolar depression: a comprehensive systematic review and meta-analysis. Mol Psychiatry 28:391–401. (PMID: 3651763810.1038/s41380-022-01905-z)
Mazza MG, Lucchi S, Tringali AGM et al (2018) Neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in mood disorders: a meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry 84:229–236. (PMID: 10.1016/j.pnpbp.2018.03.012)
Kirlioglu SS, Balcioglu YH, Kalelioglu T et al (2019) Comparison of the complete blood count-derived inflammatory markers in bipolar patients with manic and mixed episodes. Bratisl Lek Listy 120:195–199. (PMID: 31023037)
Inanli I, Aydin M, Çaliskan AM et al (2019) Neutrophil/lymphocyte ratio, monocyte/lymphocyte ratio, and mean platelet volume as systemic inflammatory markers in different states of bipolar disorder. Nord J Psychiatry 73:372–379. (PMID: 3130483210.1080/08039488.2019.1640789)
Melo MCA, Garcia RF, de Araújo CFC et al (2019) Clinical significance of neutrophil-lymphocyte and platelet-lymphocyte ratios in bipolar patients: an 18-month prospective study. Psychiatry Res 271:8–14. (PMID: 3044844910.1016/j.psychres.2018.10.077)
Barbosa IG, Rocha NP, Assis F et al (2015) Monocyte and lymphocyte activation in bipolar disorder: a new piece in the puzzle of immune dysfunction in mood disorders. Int J Neuropsychopharmacol 18.
Drexhage RC, Knijff EM, Padmos RC et al (2010) The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Rev Neurother 10:59–76. (PMID: 2002132110.1586/ern.09.144)
Becking K, Haarman BC, van der Lek RF et al (2015) Inflammatory monocyte gene expression: trait or state marker in bipolar disorder? Int J Bipolar Disord 3:20. (PMID: 26381439457403510.1186/s40345-015-0037-x)
Knijff EM, Ruwhof C, de Wit HJ et al (2006) Monocyte-derived dendritic cells in bipolar disorder. Biol Psychiatry 59:317–326. (PMID: 1616510810.1016/j.biopsych.2005.06.041)
Brambilla P, Bellani M, Isola M et al (2014) Increased M1/decreased M2 signature and signs of Th1/Th2 shift in chronic patients with bipolar disorder, but not in those with schizophrenia. Transl Psychiatry 4:e406. (PMID: 24984193411921610.1038/tp.2014.46)
Torres KC, Souza BR, Miranda DM et al (2009) The leukocytes expressing DARPP-32 are reduced in patients with schizophrenia and bipolar disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 33:214–219. (PMID: 10.1016/j.pnpbp.2008.10.020)
Karpiński P, Frydecka D, Sąsiadek MM et al (2016) Reduced number of peripheral natural killer cells in schizophrenia but not in bipolar disorder. Brain Behav Immun 54:194–200. (PMID: 2687242110.1016/j.bbi.2016.02.005)
Drexhage RC, Hoogenboezem TH, Versnel MA et al (2011) The activation of monocyte and T cell networks in patients with bipolar disorder. Brain Behav Immun 25:1206–1213. (PMID: 2144394410.1016/j.bbi.2011.03.013)
Tsai SY, Chen KP, Yang YY et al (1999) Activation of indices of cell-mediated immunity in bipolar mania. Biol Psychiatry 45:989–994. (PMID: 1038618110.1016/S0006-3223(98)00159-0)
Barbosa IG, Rocha NP, Vieira EL et al (2019) Decreased percentage of CD4(+) lymphocytes expressing chemokine receptors in bipolar disorder. Acta Neuropsychiatr 31:246–251. (PMID: 3086708110.1017/neu.2019.5)
Zheng Y, Zhang Q, Zhou X et al (2023) Altered levels of cytokine, T- and B-lymphocytes, and PD-1 expression rates in drug-naïve schizophrenia patients with acute phase. Sci Rep 13.
Wieck A, Grassi-Oliveira R, do Prado CH et al (2013) Differential neuroendocrine and immune responses to acute psychosocial stress in women with type 1 bipolar disorder. Brain Behav Immun 34:47–55. (PMID: 2387674610.1016/j.bbi.2013.07.005)
Sahbaz C, Zibandey N, Kurtulmus A et al (2020) Reduced regulatory T cells with increased proinflammatory response in patients with schizophrenia. Psychopharmacology 237.
Chen Y, Jiang T, Chen P et al (2011) Emerging tendency towards autoimmune process in major depressive patients: a novel insight from Th17 cells. Psychiatry Res 188:224–230. (PMID: 2112978210.1016/j.psychres.2010.10.029)
Li Y, Xiao B, Qiu W et al (2010) Altered expression of CD4(+)CD25(+) regulatory T cells and its 5-HT(1a) receptor in patients with major depression disorder. J Affect Disord 124:68–75. (PMID: 1990071110.1016/j.jad.2009.10.018)
Barbosa IG, Nogueira CRC, Rocha NP et al (2013) Altered intracellular signaling cascades in peripheral blood mononuclear cells from BD patients. J Psychiatr Res 47:1949–1954. (PMID: 2407532710.1016/j.jpsychires.2013.08.019)
Grosse L, Carvalho LA, Birkenhager TK et al (2016) Circulating cytotoxic T cells and natural killer cells as potential predictors for antidepressant response in melancholic depression. Restoration of T regulatory cell populations after antidepressant therapy. Psychopharmacology 233:1679–1688. (PMID: 2595332710.1007/s00213-015-3943-9)
Rapaport MH (1994) Immune parameters in euthymic bipolar patients and normal volunteers. J Affect Disord 32:149–156. (PMID: 785265610.1016/0165-0327(94)90012-4)
Fries GR, Zamzow MJ, Andrews T et al (2020) Accelerated aging in bipolar disorder: a comprehensive review of molecular findings and their clinical implications. Neurosci Biobehav Rev 112:107–116. (PMID: 3201803710.1016/j.neubiorev.2020.01.035)
Rizzo LB, Costa LG, Mansur RB et al (2014) The theory of bipolar disorder as an illness of accelerated aging: implications for clinical care and research. Neurosci Biobehav Rev 42:157–169. (PMID: 2454878510.1016/j.neubiorev.2014.02.004)
Squassina A, Pisanu C, Vanni R (2019) Mood disorders, accelerated aging, and inflammation: is the link hidden in telomeres? Cells 8:52. (PMID: 30650526635646610.3390/cells8010052)
López-Otín C, Blasco MA, Pertridge L et al (2023) Hallmarks of aging: an expanding universe. Cell 186:243–278. (PMID: 3659934910.1016/j.cell.2022.11.001)
Franceschi C, Garagnani P, Parini P et al (2018) Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14:576–590. (PMID: 3004614810.1038/s41574-018-0059-4)
Elvsashagen T, Vera E, Boen E et al (2011) The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. J Affect Disord 135:43–50. (PMID: 2188037310.1016/j.jad.2011.08.006)
Crump C, Sundquist K, Winkleby MA et al (2013) Comorbidities and mortality in bipolar disorder: a Swedish National Cohort Study. JAMA Psychiatry 70:931–939. (PMID: 2386386110.1001/jamapsychiatry.2013.1394)
Vasconcelos-Moreno MP, Fries GR, Gubert C et al (2017) Telomere length, oxidative stress, inflammation and BDNF levels in siblings of patients with bipolar disorder: implications for accelerated cellular aging. Int J Neuropsychopharmacol 20:445–454. (PMID: 28339618545837510.1093/ijnp/pyx001)
Vance MC, Bui E, Hoeppner SS et al (2018) Prospective association between major depressive disorder and leukocyte telomere length over two years. Psychoneuroendocrinology 90:157–164. (PMID: 29499556586456010.1016/j.psyneuen.2018.02.015)
Ayora M, Fraguas D, Abregú-Crespo R et al (2022) Leukocyte telomere length in patients with schizophrenia and related disorders: a meta-analysis of case-control studies. Mol Psychiatry 27:2968–2975. (PMID: 3539355710.1038/s41380-022-01541-7)
Martinsson L, Wei Y, Xu D et al (2013) Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres. Transl Psychiatry 3:e261. (PMID: 23695236366992410.1038/tp.2013.37)
Squassina A, Pisanu C, Corbett N et al (2017) Telomere length in bipolar disorder and lithium response. Eur Neuropsychopharmacol 27:560–567. (PMID: 2662126210.1016/j.euroneuro.2015.10.008)
Soto-Heredero G, de Las G, Heras MM, Escrig-Larena JI et al (2023) Extremely differentiated T cell subsets contribute to tissue deterioration during aging. Annu Rev Immunol 41:181–205. (PMID: 3712641710.1146/annurev-immunol-101721-064501)
Rizzo LB, Do Prado CH, Grassi-Oliveira R et al (2013) Immunosenescence is associated with human cytomegalovirus and shortened telomeres in type I bipolar disorder. Bipolar Disord 15:832–838. (PMID: 2402105510.1111/bdi.12121)
Simon MS, Ioannou M, Arteaga-Henríquez G et al (2023) Premature T cell aging in major depression: a double hit by the state of disease and cytomegalovirus infection. Brain Behav Immun Health 29:100608. (PMID: 36909830999528410.1016/j.bbih.2023.100608)
Teixeira AL, Rocha NP, Berk M (2023) Biomarkers in psychiatry: conceptual and methodological challenges. In: Teixeira AL, Rocha NP, Berk M (eds) Biomarkers in neuropsychiatry: a primer. Springer International Publishing, Cham, pp 343–350. (PMID: 10.1007/978-3-031-43356-6_20) - Contributed Indexing: Keywords: Bipolar disorder; Cytokines; Depression; Immunometabolism; Immunosenescence; Inflammation; Mood disorders
- Publication Date: Date Created: 20241115 Date Completed: 20241116 Latest Revision: 20241119
- Publication Date: 20241119
- Accession Number: 10.1007/978-1-0716-4200-9_4
- Accession Number: 39546225
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.