Rescaling perceptual hand maps by visual-tactile recalibration.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Publication Information:
      Ahead of Print
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: France NLM ID: 8918110 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1460-9568 (Electronic) Linking ISSN: 0953816X NLM ISO Abbreviation: Eur J Neurosci Subsets: MEDLINE
    • Publication Information:
      Publication: : Oxford : Wiley-Blackwell
      Original Publication: Oxford, UK : Published on behalf of the European Neuroscience Association by Oxford University Press, c1989-
    • Abstract:
      After concurrent visual and tactile stimuli have been presented repeatedly with a spatial offset, unisensory tactile stimuli, too, are perceived with a spatial bias towards the previously presented visual stimuli. This so-called visual-tactile ventriloquism aftereffect reflects crossmodal recalibration. As touch is intrinsically linked to body parts, we asked here whether recalibration occurs at the level of individual stimuli or at a higher, integrated, map-like level. We applied tactile stimuli to participants' hidden left hand and simultaneously presented visual stimuli with spatial offsets that, if integrated with the tactile stimuli, implied a larger hand. After recalibration, participants pointed to tactile-only stimuli and judged the distance between two tactile stimuli on the hand. The pattern of changes in tactile localization after recalibration was consistent with participants aiming at targets on an enlarged hand. This effect was evident also for new, tactile-only locations that had not been paired with visual stimuli during recalibration. In contrast, distance judgements were not consistently affected by recalibration. The generalization of recalibration to new, non-trained stimulus sites, but not across tasks and responses, suggests a link of low-level multisensory processing and map-like body representations that may, however, be purpose-specific and not organized as a general-purpose "body schema".
      (© 2024 The Author(s). European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
    • References:
      Alais, D., & Burr, D. (2004). The ventriloquist effect results from near‐optimal bimodal integration. Current Biology, 14(3), 257–262. https://doi.org/10.1016/j.cub.2004.01.029.
      Badde, S., Navarro, K. T., & Landy, M. S. (2020). Modality‐specific attention attenuates visual‐tactile integration and recalibration effects by reducing prior expectations of a common source for vision and touch. Cognition, 197, 104170. https://doi.org/10.1016/j.cognition.2019.104170.
      Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001.
      Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed‐effects models using lme4. arXiv:1406.5823 [stat]. http://arxiv.org/abs/1406.5823.
      Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300. https://doi.org/10.2307/2346101.
      Bertelson, P., Frissen, I., Vroomen, J., & De Gelder, B. (2006). The aftereffects of ventriloquism: Patterns of spatial generalization. Perception & Psychophysics, 68(3), 428–436. https://doi.org/10.3758/BF03193687.
      Botvinick, M., & Cohen, J. (1998). Rubber hands feel touch that eyes see. Nature, 391(6669), 756. https://doi.org/10.1038/35784.
      Bruns, P., & Röder, B. (2019a). Repeated but not incremental training enhances cross‐modal recalibration. Journal of Experimental Psychology: Human Perception and Performance, 45(4), 435–440. https://doi.org/10.1037/xhp0000642.
      Bruns, P., & Röder, B. (2019b). Spatial and frequency specificity of the ventriloquism aftereffect revisited. Psychological Research, 83(7), 1400–1415. https://doi.org/10.1007/s00426-017-0965-4.
      Calzolari, E., Azañón, E., Danvers, M., Vallar, G., & Longo, M. R. (2017). Adaptation aftereffects reveal that tactile distance is a basic somatosensory feature. Proceedings of the National Academy of Sciences, 114(17), 4555–4560. https://doi.org/10.1073/pnas.1614979114.
      Cardinali, L., Frassinetti, F., Brozzoli, C., Urquizar, C., Roy, A. C., & Farnè, A. (2009). Tool‐use induces morphological updating of the body schema. Current Biology, 19(12), R478–R479. https://doi.org/10.1016/j.cub.2009.05.009.
      Chancel, M., & Ehrsson, H. H. (2023). Proprioceptive uncertainty promotes the rubber hand illusion. Cortex, 165, 70–85. https://doi.org/10.1016/j.cortex.2023.04.005.
      Chancel, M., Ehrsson, H. H., & Ma, W. J. (2022). Uncertainty‐based inference of a common cause for body ownership. eLife, 11, e77221. https://doi.org/10.7554/eLife.77221.
      Chancel, M., Iriye, H., & Ehrsson, H. H. (2022). Causal inference of body ownership in the posterior parietal cortex. Journal of Neuroscience., 42, 7131–7143. https://doi.org/10.1523/JNEUROSCI.0656-22.2022.
      Ehrsson, H. H. (2007). The experimental induction of out‐of‐body experiences. Science, 317(5841), 1048–1048. https://doi.org/10.1126/science.1142175.
      Ernst, M. O., & Di Luca, M. (2011). Multisensory perception: From integration to remapping. In J. Trommershäuser, K. Kording, & M. S. Landy (Eds.), Sensory cue integration, computational neuroscience series (pp. 224–250). Oxford Academic. https://doi.org/10.1093/acprof:oso/9780195387247.003.0012. (Accessed 21 October 2024).
      Erro, R., Marotta, A., Tinazzi, M., Frera, E., & Fiorio, M. (2018). Judging the position of the artificial hand induces a “visual” drift towards the real one during the rubber hand illusion. Scientific Reports, 8(1), 2531. https://doi.org/10.1038/s41598-018-20551-6.
      Filippetti, M. L., & Crucianelli, L. (2019). If I were a grown‐up: Children's response to the rubber hand illusion with different hand sizes. Journal of Experimental Child Psychology, 185, 191–205. https://doi.org/10.1016/j.jecp.2019.04.016.
      Frissen, I., de Gelder, B., & Vroomen, J. (2012). The aftereffects of ventriloquism: The time course of the visual recalibration of auditory localization. Seeing and Perceiving, 25(1), 1–14. https://doi.org/10.1163/187847611X620883.
      Fuchs, X., Riemer, M., Diers, M., Flor, H., & Trojan, J. (2016). Perceptual drifts of real and artificial limbs in the rubber hand illusion. Scientific Reports, 6, 24362. https://doi.org/10.1038/srep24362.
      Goldreich, D. (2007). A Bayesian perceptual model replicates the cutaneous rabbit and other tactile spatiotemporal illusions. PLoS ONE, 2(3), e333. https://doi.org/10.1371/journal.pone.0000333.
      Goldreich, D., & Tong, J. (2013). Prediction, postdiction, and perceptual length contraction: A Bayesian low‐speed prior captures the cutaneous rabbit and related illusions. Frontiers in Psychology, 4, 221. https://doi.org/10.3389/fpsyg.2013.00221.
      Haggard, P., & Jundi, S. (2009). Rubber hand illusions and size‐weight illusions: Self‐representation modulates representation of external objects. Perception, 38(12), 1796–1803. https://doi.org/10.1068/p6399.
      Head, H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34(2–3), 102–254. https://doi.org/10.1093/brain/34.2-3.102.
      Heed, T., Gründler, M., Rinkleib, J., Rudzik, F. H., Collins, T., Cooke, E., & O'Regan, J. K. (2011). Visual information and rubber hand embodiment differentially affect reach‐to‐grasp actions. Acta Psychologica, 138(1), 263–271. https://doi.org/10.1016/j.actpsy.2011.07.003.
      Kagerer, F. A., Contreras‐Vidal, J. L., & Stelmach, G. E. (1997). Adaptation to gradual as compared with sudden visuo‐motor distortions. Experimental Brain Research, 115(3), 557–561. https://doi.org/10.1007/pl00005727.
      Keizer, A., Smeets, M. A. M., Dijkerman, H. C., van Elburg, A., & Postma, A. (2012). Aberrant somatosensory perception in anorexia nervosa. Psychiatry Research, 200(2–3), 530–537. https://doi.org/10.1016/j.psychres.2012.05.001.
      Kilteni, K., Maselli, A., Kording, K. P., & Slater, M. (2015). Over my fake body: Body ownership illusions for studying the multisensory basis of own‐body perception. Frontiers in Human Neuroscience, 9, 141. https://doi.org/10.3389/fnhum.2015.00141.
      Kilteni, K., Normand, J.‐M., Sanchez‐Vives, M. V., & Slater, M. (2012). Extending body space in immersive virtual reality: A very long arm illusion. PLoS ONE, 7(7), e40867. https://doi.org/10.1371/journal.pone.0040867.
      Kopčo, N., Lin, I.‐F., Shinn‐Cunningham, B. G., & Groh, J. M. (2009). Reference frame of the ventriloquism aftereffect. The Journal of Neuroscience, 29(44), 13809–13814. https://doi.org/10.1523/JNEUROSCI.2783-09.2009.
      Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2014). lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). http://CRAN.R-project.org/package=lmerTest.
      Lenggenhager, B., Tadi, T., Metzinger, T., & Blanke, O. (2007). Video ergo sum: Manipulating bodily self‐consciousness. Science, 317(5841), 1096–1099. https://doi.org/10.1126/science.1143439.
      Lenth, R., Singmann, H., Love, J., Buerkner, P., & Herve, M. (2019). emmeans: Estimated marginal means, aka least‐squares means (1.4.3.01) [Software]. https://CRAN.R-project.org/package=emmeans.
      Limanowski, J. (2021). Precision control for a flexible body representation. Neuroscience & Biobehavioral Reviews., 134, 104401. https://doi.org/10.1016/j.neubiorev.2021.10.023.
      Linkenhoker, B. A., & Knudsen, E. I. (2002). Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature, 419(6904), 6296–6904. https://doi.org/10.1038/nature01002.
      Longo, M. R., Azañón, E., & Haggard, P. (2010). More than skin deep: Body representation beyond primary somatosensory cortex. Neuropsychologia, 48(3), 655–668. https://doi.org/10.1016/j.neuropsychologia.2009.08.022.
      Longo, M. R., & Haggard, P. (2010). An implicit body representation underlying human position sense. Proceedings of the National Academy of Sciences, 107(26), 11727–11732. https://doi.org/10.1073/pnas.1003483107.
      Longo, M. R., & Haggard, P. (2011). Weber's illusion and body shape: Anisotropy of tactile size perception on the hand. Journal of Experimental Psychology: Human Perception and Performance, 37(3), 720–726. https://doi.org/10.1037/a0021921.
      Longo, M. R., & Morcom, R. (2016). No correlation between distorted body representations underlying tactile distance perception and position sense. Frontiers in Human Neuroscience, 10, 593. https://doi.org/10.3389/fnhum.2016.00593.
      Macaluso, E., & Driver, J. (2005). Multisensory spatial interactions: A window onto functional integration in the human brain. Trends in Neurosciences, 28(5), 264–271. https://doi.org/10.1016/j.tins.2005.03.008.
      Mancini, F., Longo, M. R., Iannetti, G. D., & Haggard, P. (2011). A supramodal representation of the body surface. Neuropsychologia, 49(5), 1194–1201. https://doi.org/10.1016/j.neuropsychologia.2010.12.040.
      Martel, M., Fuchs, X., Trojan, J., Gockel, V., Habets, B., & Heed, T. (2022). Illusory tactile movement crosses arms and legs and is coded in external space. Cortex, 149, 202–225. https://doi.org/10.1016/j.cortex.2022.01.014.
      Matsumiya, K. (2022). Multiple representations of the body schema for the same body part. Proceedings of the National Academy of Sciences, 119(4), e2112318119. https://doi.org/10.1073/pnas.2112318119.
      Medina, J., & Coslett, H. B. (2010). From maps to form to space: Touch and the body schema. Neuropsychologia, 48(3), 645–654. https://doi.org/10.1016/j.neuropsychologia.2009.08.017.
      Medina, J., & Duckett, C. (2017). Domain‐general biases in spatial localization: Evidence against a distorted body model hypothesis. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1430–1443. https://doi.org/10.1037/xhp0000397.
      Miller, L. E., Cawley‐Bennett, A., Longo, M. R., & Saygin, A. P. (2017). The recalibration of tactile perception during tool use is body‐part specific. Experimental Brain Research, 235(10), 2917–2926. https://doi.org/10.1007/s00221-017-5028-y.
      Miller, L. E., Longo, M. R., & Saygin, A. P. (2014). Tool morphology constrains the effects of tool use on body representations. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2143–2153. https://doi.org/10.1037/a0037777.
      Miller, L. E., Longo, M. R., & Saygin, A. P. (2016). Mental body representations retain homuncular shape distortions: Evidence from Weber's illusion. Consciousness and Cognition, 40, 17–25. https://doi.org/10.1016/j.concog.2015.12.008.
      Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4.
      Perera, A. T., Newport, R., & McKenzie, K. J. (2017). Changing hands: Persistent alterations to body image following brief exposure to multisensory distortions. Experimental Brain Research, 1–13, 1809–1821. https://doi.org/10.1007/s00221-017-4935-2.
      Peviani, V. C., Miller, L. E., & Medendorp, W. P. (2024). Biases in hand perception are driven by somatosensory computations, not a distorted hand model. Current Biology, 34(10), 2238–2246.e5. https://doi.org/10.1016/j.cub.2024.04.010.
      Piitulainen, H., Nurmi, T., & Hakonen, M. (2021). Attention directed to proprioceptive stimulation alters its cortical processing in the primary sensorimotor cortex. European Journal of Neuroscience, 54(1), 4269–4282. https://doi.org/10.1111/ejn.15251.
      Pinheiro, J. C., & Bates, D. M. (2000). Mixed‐effects models in S and S‐PLUS. Springer. https://doi.org/10.1007/978-1-4419-0318-1.
      Ratcliffe, N., & Newport, R. (2017). The effect of visual, spatial and temporal manipulations on embodiment and action. Frontiers in Human Neuroscience, 11, 227. https://doi.org/10.3389/fnhum.2017.00227.
      Recanzone, G. H. (1998). Rapidly induced auditory plasticity: The ventriloquism aftereffect. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 869–875. https://doi.org/10.1073/pnas.95.3.869.
      Riemer, M., Trojan, J., Beauchamp, M., & Fuchs, X. (2019). The rubber hand universe: On the impact of methodological differences in the rubber hand illusion. Neuroscience & Biobehavioral Reviews, 104, 268–280. https://doi.org/10.1016/j.neubiorev.2019.07.008.
      Samad, M., & Shams, L. (2016). Visual‐somatotopic interactions in spatial perception. Neuroreport, 27(3), 180–185. https://doi.org/10.1097/WNR.0000000000000521.
      Samad, M., & Shams, L. (2018). Recalibrating the body: Visuotactile ventriloquism aftereffect. PeerJ, 6, e4504. https://doi.org/10.7717/peerj.4504.
      Smeets, J. B. J., & Brenner, E. (2023). The cost of aiming for the best answers: Inconsistent perception. Frontiers in Integrative Neuroscience, 17, 1118240. https://doi.org/10.3389/fnint.2023.1118240.
      Tamè, L., Azañón, E., & Longo, M. R. (2019). A conceptual model of tactile processing across body features of size, shape, side, and spatial location. Frontiers in Psychology, 10, 291. https://doi.org/10.3389/fpsyg.2019.00291.
      Tsakiris, M. (2010). My body in the brain: A neurocognitive model of body‐ownership. Neuropsychologia, 48(3), 703–712. https://doi.org/10.1016/j.neuropsychologia.2009.09.034.
      van der Hoort, B., Guterstam, A., & Ehrsson, H. H. (2011). Being Barbie: The size of one's own body determines the perceived size of the world. PLoS ONE, 6(5), e20195. https://doi.org/10.1371/journal.pone.0020195.
      Wann, J. P., & Ibrahim, S. F. (1992). Does limb proprioception drift? Experimental Brain Research, 91(1), 162–166. https://doi.org/10.1007/BF00230024.
      Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-98141-3.
    • Contributed Indexing:
      Keywords: body representation; perceptual maps; tactile distance perception; tactile localization; visuotactile ventriloquism
    • Publication Date:
      Date Created: 20241115 Latest Revision: 20241115
    • Publication Date:
      20241115
    • Accession Number:
      10.1111/ejn.16571
    • Accession Number:
      39545382