Aquaporins in sepsis- an update.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Rump K;Rump K; Adamzik M; Adamzik M
  • Source:
    Frontiers in immunology [Front Immunol] 2024 Oct 31; Vol. 15, pp. 1495206. Date of Electronic Publication: 2024 Oct 31 (Print Publication: 2024).
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Frontiers Research Foundation] Country of Publication: Switzerland NLM ID: 101560960 Publication Model: eCollection Cited Medium: Internet ISSN: 1664-3224 (Electronic) Linking ISSN: 16643224 NLM ISO Abbreviation: Front Immunol Subsets: MEDLINE
    • Publication Information:
      Original Publication: [Lausanne : Frontiers Research Foundation]
    • Subject Terms:
    • Abstract:
      Aquaporins (AQPs), a family of membrane proteins that facilitate the transport of water and small solutes, have garnered increasing attention for their role in sepsis, not only in fluid balance but also in immune modulation and metabolic regulation. Sepsis, characterized by an excessive and dysregulated immune response to infection, leads to widespread organ dysfunction and significant mortality. This review focuses on the emerging roles of aquaporins in immune metabolism and their potential as therapeutic targets in sepsis, with particular attention to the modulation of inflammatory responses and organ protection. Additionally, it explores the diverse roles of aquaporins across various organ systems, highlighting their contributions to renal function, pulmonary gas exchange, cardiac protection, and gastrointestinal barrier integrity in the context of sepsis. Recent studies suggest that AQPs, particularly aquaglyceroporins like AQP3, AQP7, AQP9, and AQP10, play pivotal roles in immune cell metabolism and offer new therapeutic avenues for sepsis treatment. In the context of sepsis, immune cells undergo metabolic shifts to meet the heightened energy demands of the inflammatory response. A key adaptation is the shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, where pyruvate is converted to lactate, enabling faster ATP production. AQPs, particularly aquaglyceroporins, may facilitate this process by transporting glycerol, a substrate that fuels glycolysis. AQP3, for example, enhances glucose metabolism by transporting glycerol and complementing glucose uptake via GLUT1, while also regulating O-GlcNAcylation, a post-translational modification that boosts glycolytic flux. AQP7 could further contributes to immune cell energy production by influencing lipid metabolism and promoting glycolysis through p38 signaling. These mechanisms could be crucial for maintaining the energy supply needed for an effective immune response during sepsis. Beyond metabolism, AQPs also regulate key immune functions. AQP9, highly expressed in septic patients, is essential for neutrophil migration and activation, both of which are critical for controlling infection. AQP3, on the other hand, modulates inflammation through the Toll-like receptor 4 (TLR4) pathway, while AQP1 plays a role in immune responses by activating the PI3K pathway, promoting macrophage polarization, and protecting against lipopolysaccharide (LPS)-induced acute kidney injury (AKI). These insights into the immunoregulatory roles of AQPs suggest their potential as therapeutic targets to modulate inflammation in sepsis. Therapeutically, AQPs present promising targets for reducing organ damage and improving survival in sepsis. For instance, inhibition of AQP9 with compounds like HTS13286 or RG100204 has been shown to reduce inflammation and improve survival by modulating NF-κB signaling and decreasing oxidative stress in animal models. AQP5 inhibition with methazolamide and furosemide has demonstrated efficacy in reducing immune cell migration and lung injury, suggesting its potential in treating acute lung injury (ALI) in sepsis. Additionally, the regulation of AQP1 through non-coding RNAs (lncRNAs and miRNAs) may offer new strategies to mitigate organ damage and inflammatory responses. Moreover, AQPs have emerged as potential biomarkers for sepsis progression and outcomes. Altered expression of AQPs, such as AQP1, AQP3, and AQP5, correlates with sepsis severity, and polymorphisms in AQP5 have been linked to better survival rates and improved outcomes in sepsis-related acute respiratory distress syndrome (ARDS). This suggests that AQP expression could be used to stratify patients and tailor treatments based on individual AQP profiles. In conclusion, AQPs play a multifaceted role in the pathophysiology of sepsis, extending beyond fluid balance to crucial involvement in immune metabolism and inflammation. Targeting AQPs offers novel therapeutic strategies to mitigate sepsis-induced organ damage and improve patient survival. Continued research into the metabolic and immune functions of AQPs will be essential for developing targeted therapies that can be translated into clinical practice.
      Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
      (Copyright © 2024 Rump and Adamzik.)
    • References:
      Int Immunopharmacol. 2024 Nov 15;141:112935. (PMID: 39159561)
      Int J Mol Sci. 2022 Oct 05;23(19):. (PMID: 36233114)
      PLoS One. 2018 Jul 30;13(7):e0198847. (PMID: 30059504)
      Am J Pathol. 2001 Oct;159(4):1199-209. (PMID: 11583946)
      Oncol Lett. 2018 Sep;16(3):3290-3296. (PMID: 30127927)
      Cell Biosci. 2018 Feb 09;8:10. (PMID: 29449936)
      Neurochem Int. 2008 Feb;52(3):447-56. (PMID: 17884256)
      Exp Ther Med. 2018 May;15(5):4243-4252. (PMID: 29731819)
      Adv Exp Med Biol. 2023;1398:195-202. (PMID: 36717495)
      J Vet Med Sci. 2013;75(8):1081-4. (PMID: 23519939)
      Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2006 Aug;18(8):462-5. (PMID: 16887054)
      PLoS One. 2023 Jul 25;18(7):e0288507. (PMID: 37490500)
      Physiol Genomics. 2006 Apr 13;25(2):203-15. (PMID: 16403844)
      PLoS One. 2016 Nov 11;11(11):e0166184. (PMID: 27835672)
      Cancer Res. 2020 Oct 1;80(19):4071-4086. (PMID: 32631905)
      Ren Fail. 2021 Dec;43(1):291-301. (PMID: 33494641)
      Front Pharmacol. 2021 Nov 23;12:603863. (PMID: 34887746)
      Cells. 2020 Apr 07;9(4):. (PMID: 32272738)
      Am J Physiol Lung Cell Mol Physiol. 2012 Jul 1;303(1):L20-32. (PMID: 22523283)
      Int J Mol Sci. 2019 Mar 29;20(7):. (PMID: 30934923)
      JAMA. 2016 Feb 23;315(8):801-10. (PMID: 26903338)
      Front Mol Neurosci. 2021 Mar 31;14:641993. (PMID: 33867933)
      Shock. 2014 Oct;42(4):322-6. (PMID: 24978896)
      Cell Death Differ. 2024 Aug 24;:. (PMID: 39179640)
      JAMA. 2014 Apr 2;311(13):1308-16. (PMID: 24638143)
      Trends Pharmacol Sci. 2022 Jan;43(1):30-42. (PMID: 34863533)
      J Neuroinflammation. 2024 May 27;21(1):138. (PMID: 38802927)
      Biochem Biophys Res Commun. 1998 Mar 6;244(1):268-74. (PMID: 9514918)
      IUBMB Life. 2017 Dec;69(12):978-984. (PMID: 29087027)
      Int J Mol Med. 2015 Dec;36(6):1623-9. (PMID: 26498776)
      Exp Physiol. 2023 Dec;108(12):1456-1465. (PMID: 37909847)
      J Cell Biochem. 2019 Jun;120(6):8956-8964. (PMID: 30838705)
      Am J Physiol Gastrointest Liver Physiol. 2008 Feb;294(2):G567-75. (PMID: 18174273)
      J Cardiovasc Pharmacol. 2021 Aug 1;78(2):280-287. (PMID: 34050090)
      Mol Med Rep. 2021 Nov;24(5):. (PMID: 34498707)
      Cancer Metab. 2013 Feb 04;1(1):9. (PMID: 24280180)
      Shock. 2023 Sep 1;60(3):469-477. (PMID: 37548627)
      FASEB J. 2011 Dec;25(12):4233-9. (PMID: 21865318)
      Int J Immunopathol Pharmacol. 2012 Oct-Dec;25(4):911-22. (PMID: 23298482)
      Open Forum Infect Dis. 2016 Dec 8;3(4):ofw207. (PMID: 27942538)
      Am J Hematol. 2004 Mar;75(3):128-33. (PMID: 14978691)
      J Tradit Chin Med. 2015 Dec;35(6):679-84. (PMID: 26742314)
      J Biol Chem. 2014 May 16;289(20):13937-47. (PMID: 24700466)
      J Adv Res. 2021 Jun 30;37:119-131. (PMID: 35499042)
      Physiol Rev. 2002 Jan;82(1):205-44. (PMID: 11773613)
      Int J Mol Sci. 2024 Jan 03;25(1):. (PMID: 38203778)
      Neuroscience. 2019 Apr 15;404:484-498. (PMID: 30738082)
      Cells. 2021 Feb 18;10(2):. (PMID: 33670755)
      Expert Rev Anti Infect Ther. 2017 Feb;15(2):121-132. (PMID: 27885885)
      Brain Behav Immun. 2020 Jan;83:200-213. (PMID: 31622656)
      Intensive Care Med. 2018 Nov;44(11):1826-1835. (PMID: 30284637)
      BMC Complement Altern Med. 2017 Jun 2;17(1):288. (PMID: 28577538)
      Front Physiol. 2018 Feb 16;9:101. (PMID: 29503618)
      Front Physiol. 2024 Jan 19;15:1329644. (PMID: 38312312)
      J Clin Med Res. 2015 Jul;7(7):534-9. (PMID: 26015818)
      Int J Mol Sci. 2023 Dec 29;25(1):. (PMID: 38203657)
      Front Mol Biosci. 2015 Oct 26;2:59. (PMID: 26579527)
      J Physiol Biochem. 2016 Aug;73(3):381-386. (PMID: 28470555)
      Metab Brain Dis. 2014 Dec;29(4):927-36. (PMID: 24567229)
      Mol Hum Reprod. 2017 Nov 1;23(11):725-737. (PMID: 28961924)
      Clin Chim Acta. 2025 Jan 1;564:119948. (PMID: 39214396)
      Pulm Pharmacol Ther. 2018 Oct;52:18-26. (PMID: 30130572)
      Front Immunol. 2018 Oct 16;9:2355. (PMID: 30386332)
      Biomolecules. 2022 Jun 27;12(7):. (PMID: 35883453)
      Immunity. 2018 Jan 16;48(1):35-44.e6. (PMID: 29195811)
      Crit Care Med. 2008 Jan;36(1):246-55. (PMID: 17989570)
      Afr J Lab Med. 2024 Aug 27;13(1):2375. (PMID: 39228902)
      J Proteome Res. 2023 Nov 3;22(11):3640-3651. (PMID: 37851947)
      Nat Rev Drug Discov. 2014 Apr;13(4):259-77. (PMID: 24625825)
      Int J Mol Sci. 2020 Jul 27;21(15):. (PMID: 32727087)
      PLoS One. 2012;7(2):e31490. (PMID: 22319637)
      Inflammopharmacology. 2024 Apr;32(2):1575-1592. (PMID: 38267609)
      Adv Sci (Weinh). 2023 May;10(14):e2205862. (PMID: 36922751)
      JAMA. 2017 Oct 3;318(13):1241-1249. (PMID: 28903154)
      Adv Exp Med Biol. 2023;1398:317-330. (PMID: 36717504)
      Int Immunopharmacol. 2020 Aug;85:106626. (PMID: 32492627)
      Anesthesiology. 2011 Apr;114(4):912-7. (PMID: 21427539)
      J Cell Sci. 2005 Aug 1;118(Pt 15):3225-32. (PMID: 16079275)
      Int J Mol Sci. 2021 Feb 12;22(4):. (PMID: 33673336)
      Am J Physiol. 1993 Oct;265(4 Pt 2):F463-76. (PMID: 7694481)
      Int Immunopharmacol. 2024 Oct 25;140:112916. (PMID: 39133961)
      Int Urol Nephrol. 2013 Aug;45(4):1187-96. (PMID: 23255025)
      Kidney Int. 2019 Nov;96(5):1083-1099. (PMID: 31443997)
      Biomed Pharmacother. 2018 Sep;105:1183-1191. (PMID: 30021355)
      Sci Rep. 2019 Dec 6;9(1):18511. (PMID: 31811204)
      Biol Pharm Bull. 2019;42(10):1641-1650. (PMID: 31582652)
      Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F193-F203. (PMID: 31682170)
      Tuberc Respir Dis (Seoul). 2016 Apr;79(2):53-7. (PMID: 27066082)
      Front Immunol. 2022 Jun 14;13:900906. (PMID: 35774785)
      J Anat. 2002 Jun;200(6):639-46. (PMID: 12162731)
      Neural Regen Res. 2021 Jul;16(7):1288-1293. (PMID: 33318407)
      J Transl Med. 2016 Nov 21;14(1):321. (PMID: 27871297)
      Anasthesiol Intensivmed Notfallmed Schmerzther. 2024 Feb;59(2):78-94. (PMID: 38354729)
      Int J Mol Sci. 2024 Jan 23;25(3):. (PMID: 38338680)
      Allergol Immunopathol (Madr). 2021 Sep 01;49(5):117-124. (PMID: 34476932)
      Oncology. 2024 Aug 14;:1-8. (PMID: 39217971)
      Front Oncol. 2022 Sep 21;12:988119. (PMID: 36212456)
      Inflamm Res. 2020 May;69(5):509-521. (PMID: 32179955)
      J Leukoc Biol. 2011 Nov;90(5):963-73. (PMID: 21873454)
      Int J Mol Sci. 2024 Jan 19;25(2):. (PMID: 38279209)
      Med Mol Morphol. 2014 Jun;47(2):90-9. (PMID: 23949237)
      Shock. 2013 Nov;40(5):430-6. (PMID: 24088990)
      Int J Clin Exp Pathol. 2014 Dec 01;7(12):8443-52. (PMID: 25674208)
      Invest Ophthalmol Vis Sci. 2023 Jan 3;64(1):4. (PMID: 36626177)
      J Chem Neuroanat. 2023 Oct;132:102306. (PMID: 37394105)
      J Appl Genet. 2024 Dec;65(4):839-851. (PMID: 38358594)
      Crit Care. 2013 Sep 12;17(5):R199. (PMID: 24028651)
      Crit Care Med. 2016 Dec;44(12):2223-2230. (PMID: 27352126)
      Pharmacol Ther. 2015 Nov;155:22-35. (PMID: 26277280)
      Exp Physiol. 2016 Nov 1;101(11):1418-1431. (PMID: 27424549)
      PLoS One. 2018 Dec 5;13(12):e0208582. (PMID: 30517197)
      Front Immunol. 2024 Aug 22;15:1443108. (PMID: 39238634)
      Anesthesiology. 2019 Mar;130(3):404-413. (PMID: 30689610)
      J Mol Cell Cardiol. 2024 Oct;195:73-82. (PMID: 39142438)
      Neoplasia. 2007 Sep;9(9):777-87. (PMID: 17898873)
      Intensive Care Med Exp. 2019 Jul 25;7(Suppl 1):45. (PMID: 31346833)
      Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2308511120. (PMID: 37871201)
      Adv Exp Med Biol. 2023;1398:1-13. (PMID: 36717483)
    • Contributed Indexing:
      Keywords: AQP3; AQP5 aquaporin 5; AQP9 aquaporin-9; aquaporin (AQP); drug target; immune metabolism; pathophysiology sepsis; sepsis
    • Accession Number:
      0 (Aquaporins)
    • Publication Date:
      Date Created: 20241115 Date Completed: 20241116 Latest Revision: 20241123
    • Publication Date:
      20241126
    • Accession Number:
      PMC11560437
    • Accession Number:
      10.3389/fimmu.2024.1495206
    • Accession Number:
      39544938