Menu
×
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
Closed
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
John's Island Library
Closed
Phone: (843) 559-1945
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Main Library
Closed
Phone: (843) 805-6930
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
QTL mapping and genome-wide association analysis reveal genetic loci and candidate gene for resistance to gray leaf spot in tropical and subtropical maize germplasm.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Pan Y;Pan Y;Pan Y; Jiang F; Jiang F; Shaw RK; Shaw RK; Sun J; Sun J; Sun J; Li L; Li L; Yin X; Yin X; Bi Y; Bi Y; Kong J; Kong J; Kong J; Zong H; Zong H; Zong H; Gong X; Gong X; Gong X; Ijaz B; Ijaz B; Fan X; Fan X
- Source:
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik [Theor Appl Genet] 2024 Nov 13; Vol. 137 (12), pp. 266. Date of Electronic Publication: 2024 Nov 13.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Country of Publication: Germany NLM ID: 0145600 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2242 (Electronic) Linking ISSN: 00405752 NLM ISO Abbreviation: Theor Appl Genet Subsets: MEDLINE
- Publication Information: Original Publication: Berlin, New York, Springer
- Subject Terms: Zea mays*/genetics ; Zea mays*/microbiology ; Quantitative Trait Loci* ; Chromosome Mapping* ; Polymorphism, Single Nucleotide* ; Plant Diseases*/genetics ; Plant Diseases*/microbiology ; Disease Resistance*/genetics; Genes, Plant ; Phenotype ; Genetic Linkage ; Genotype ; Genome-Wide Association Study ; Genetic Association Studies
- Abstract: Key Message: Using QTL mapping and GWAS, two candidate genes (Zm00001d051039 and Zm00001d051147) were consistently identified across the three different environments and BLUP values. GWAS analysis identified the candidate gene, Zm00001d044845. These genes were subsequently validated to exhibit a significant association with maize gray leaf spot (GLS) resistance. Gray leaf spot (GLS) is a major foliar disease of maize (Zea mays L.) that causes significant yield losses worldwide. Understanding the genetic mechanisms underlying gray leaf spot resistance is crucial for breeding high-yielding and disease-resistant varieties. In this study, eight tropical and subtropical germplasms were crossed with the temperate germplasm Ye107 to develop a nested association mapping (NAM) population comprising 1,653 F2:8 RILs, consisting of eight recombinant inbred line (RIL) subpopulations, using the single-seed descent method. The NAM population was evaluated for GLS resistance in three different environments, and genotyping by sequencing of the NAM population generated 593,719 high-quality single-nucleotide polymorphisms (SNPs). Linkage analysis and genome-wide association studies (GWASs) were conducted to identify candidate genes regulating GLS resistance in maize. Both analyses identified 25 QTLs and 149 SNPs that were significantly associated with GLS resistance. Candidate genes were screened 20 Kb upstream and downstream of the significant SNPs, and three novel candidate genes (Zm00001d051039, Zm00001d051147, and Zm00001d044845) were identified. Zm00001d051039 and Zm00001d051147 were located on chromosome 4 and co-localized in both linkage (qGLS4-1 and qGLS4-2) and GWAS analyses. SNP-138,153,206 was located 0.499 kb downstream of the candidate gene Zm00001d051039, which encodes the protein IN2-1 homolog B, a homolog of glutathione S-transferase (GST). GSTs and protein IN2-1 homolog B scavenge reactive oxygen species under various stress conditions, and GSTs are believed to protect plants from a wide range of biotic and abiotic stresses by detoxifying reactive electrophilic compounds. Zm00001d051147 encodes a probable beta-1,4-xylosyltransferase involved in the biosynthesis of xylan in the cell wall, enhancing resistance. SNP-145,813,215 was located 2.69 kb downstream of the candidate gene. SNP-5,043,412 was consistently identified in three different environments and BLUP values and was located 8.788 kb downstream of the candidate gene Zm00001d044845 on chromosome 9. Zm00001d044845 encodes the U-box domain-containing protein 4 (PUB4), which is involved in regulating plant immunity. qRT-PCR analysis showed that the relative expression levels of the three candidate genes were significantly upregulated in the leaves of the TML139 (resistant) parent, indicating that these three candidate genes could be associated with resistance to GLS. The findings of this study are significant for marker-assisted breeding aimed at enhancing resistance to GLS in maize and lay the foundation for further elucidation of the genetic mechanisms underlying resistance to gray leaf spot in maize and breeding of new disease-resistant varieties.
Competing Interests: Declarations Conflict of interest The authors declare that they have no competing interests.
(© 2024. The Author(s).) - References: Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664. https://doi.org/10.1101/gr.094052.109. (PMID: 10.1101/gr.094052.109196482172752134)
Alvarado G, Rodríguez FM, Pacheco A, Burgueño J, Crossa J, Vargas M, Pérez-Rodríguez P, Lopez-Cruz MA (2020) META-R: a software to analyze data from multi-environment plant breeding trials. Crop J 8:745–756. https://doi.org/10.1016/j.cj.2020.03.010. (PMID: 10.1016/j.cj.2020.03.010)
Anders N, Wilson LFL, Sorieul M, Nikolovski N, Dupree P (2022) β-1,4-Xylan backbone synthesis in higher plants: How complex can it be? Front Plant Sci 13:1076298. https://doi.org/10.3389/fpls.2022.1076298. (PMID: 10.3389/fpls.2022.107629836714768)
Bacete L, Mélida H, Miedes E, Molina A (2018) Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J 93:614–636. https://doi.org/10.1111/tpj.13807. (PMID: 10.1111/tpj.1380729266460)
Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. https://doi.org/10.1093/bioinformatics/bth457. (PMID: 10.1093/bioinformatics/bth45715297300)
Beck DL, Vasal SK, Crossa J (1991) Heterosis and combining ability among subtropical and temperate intermediate-maturity maize germplasm. Crop Sci 31:68–73. https://doi.org/10.2135/cropsci1991.0011183X002600010017x. (PMID: 10.2135/cropsci1991.0011183X002600010017x)
Benson JM, Poland JA, Benson BM, Stromberg EL, Nelson RJ (2015) Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis. PLoS Genet 11:e1005045. https://doi.org/10.1371/journal.pgen.1005045. (PMID: 10.1371/journal.pgen.1005045257641794357430)
Boorboori MR, Li Z, Yan X, Dan M, Zhang Z, Lin W, Fang C (2021) Comparison of silicon-evoked responses on arsenic stress between different dular rice genotypes. Plants (Basel) 10:2210. https://doi.org/10.3390/plants10102210. (PMID: 10.3390/plants1010221034686019)
Bureau TE, Wessler SR (1994) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907–916. https://doi.org/10.1105/tpc.6.6.907. (PMID: 10.1105/tpc.6.6.9078061524160488)
Chen G, Xiao Y, Dai S, Dai Z, Wang X, Li B, Jaqueth JS, Li W, Lai Z, Ding J, Yan J (2023) Genetic basis of resistance to southern corn leaf blight in the maize multi-parent population and diversity panel. Plant Biotechnol J 21:506–520. https://doi.org/10.1111/pbi.13967. (PMID: 10.1111/pbi.13967363830269946143)
Cheng Z, Lv X, Duan C, Zhu H, Wang J, Xu Z, Yin H, Zhou X, Li M, Hao Z, Li F, Li X, Weng J (2023) Pathogenicity variation in two genomes of cercospora species causing gray leaf spot in maize. Mol Plant Microbe Interact 36:14–25. https://doi.org/10.1094/mpmi-06-22-0138-r. (PMID: 10.1094/mpmi-06-22-0138-r36251001)
Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971. https://doi.org/10.1093/genetics/138.3.963. (PMID: 10.1093/genetics/138.3.96378517881206241)
Dai Z, Pi Q, Liu Y, Hu L, Li B, Zhang B, Wang Y, Jiang M, Qi X, Li W, Gui S, Llaca V, Fengler K, Thatcher S, Li Z, Liu X, Fan X, Lai Z (2024) ZmWAK02 encoding an RD-WAK protein confers maize resistance against gray leaf spot. New Phytol 241:1780–1793. https://doi.org/10.1111/nph.19465. (PMID: 10.1111/nph.1946538058244)
de Jonge R, Ebert MK, Huitt-Roehl CR, Pal P, Suttle JC, Spanner RE, Neubauer JD, Jurick WM 2nd, Stott KA, Secor GA, Thomma B, Van de Peer Y, Townsend CA, Bolton MD (2018) Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum. Proc Natl Acad Sci U S A 115:E5459-e5466. https://doi.org/10.1073/pnas.1712798115. (PMID: 10.1073/pnas.1712798115298441936004482)
Desaki Y, Takahashi S, Sato K, Maeda K, Matsui S, Yoshimi I, Miura T, Jumonji JI et al (2019) PUB4, a CERK1-interacting ubiquitin ligase, positively regulates MAMP-triggered immunity in Arabidopsis. Plant Cell Physiol 60:2573–2583. https://doi.org/10.1093/pcp/pcz151. (PMID: 10.1093/pcp/pcz15131368495)
Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869. https://doi.org/10.1074/jbc.M202919200. (PMID: 10.1074/jbc.M20291920012077129)
Du L, Yu F, Zhang H, Wang B, Ma K, Yu C, Xin W, Huang X, Liu Y, Liu K (2020) Genetic mapping of quantitative trait loci and a major locus for resistance to grey leaf spot in maize. Theor Appl Genet 133:2521–2533. https://doi.org/10.1007/s00122-020-03614-z. (PMID: 10.1007/s00122-020-03614-z32468093)
Gage JL, Monier B, Giri A, Buckler ES (2020) Ten years of the maize nested association mapping population: impact, limitations, and future directions. Plant Cell 32:2083–2093. https://doi.org/10.1105/tpc.19.00951. (PMID: 10.1105/tpc.19.00951323982757346555)
Gao C, Tang D, Wang W (2022) The role of ubiquitination in plant immunity: fine-tuning immune signaling and beyond. Plant Cell Physiol 63:1405–1413. https://doi.org/10.1093/pcp/pcac105. (PMID: 10.1093/pcp/pcac10535859340)
Geoghegan I, Steinberg G, Gurr S (2017) The role of the fungal cell wall in the infection of plants. Trends Microbiol 25:957–967. https://doi.org/10.1016/j.tim.2017.05.015. (PMID: 10.1016/j.tim.2017.05.01528641930)
Han K, Lee HY, Ro NY, Hur OS, Lee JH, Kwon JK, Kang BC (2018) QTL mapping and GWAS reveal candidate genes controlling Capsaicinoid content in Capsicum. Plant Biotechnol J 16:1546–1558. https://doi.org/10.1111/pbi.12894. (PMID: 10.1111/pbi.12894294065656097123)
He W, Zhu Y, Leng Y, Yang L, Zhang B, Yang J, Zhang X, Lan H et al (2021) Transcriptomic analysis reveals candidate genes responding maize gray leaf spot caused by Cercospora zeina. Plants (Basel) 10:2257. https://doi.org/10.3390/plants10112257. (PMID: 10.3390/plants1011225734834621)
Hu C, Kuang T, Shaw RK, Zhang Y, Fan J, Bi Y, Jiang F, Guo R, Fan X (2024) Genetic dissection of resistance to gray leaf spot by genome-wide association study in a multi-parent maize population. BMC Plant Biol 24:10. https://doi.org/10.1186/s12870-023-04701-1. (PMID: 10.1186/s12870-023-04701-13816389610759574)
Jiang F, Liu L, Li Z, Bi Y, Yin X, Guo R, Wang J, Zhang Y, Shaw RK, Fan X (2023) Identification of candidate QTLs and genes for ear diameter by multi-parent population in maize. Genes (Basel) 14:1305. https://doi.org/10.3390/genes14061305. (PMID: 10.3390/genes1406130537372485)
Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527. https://doi.org/10.1038/nature22971. (PMID: 10.1038/nature22971286057517052699)
Kaler AS, Gillman JD, Beissinger T, Purcell LC (2019) comparing different statistical models and multiple testing corrections for association mapping in soybean and maize. Front Plant Sci 10:1794. https://doi.org/10.3389/fpls.2019.01794. (PMID: 10.3389/fpls.2019.0179432158452)
Kibe M, Nair SK, Das B, Bright JM, Makumbi D, Kinyua J, Suresh LM, Beyene Y, Olsen MS, Prasanna BM, Gowda M (2020) Genetic dissection of resistance to gray leaf spot by combining genome-wide association, linkage mapping, and genomic prediction in tropical maize germplasm. Front Plant Sci 11:572027. https://doi.org/10.3389/fpls.2020.572027. (PMID: 10.3389/fpls.2020.572027332241637667048)
Korsman J, Meisel B, Kloppers FJ, Crampton BG, Berger DK (2012) Quantitative phenotyping of grey leaf spot disease in maize using real-time PCR. Eur J Plant Pathol 133:461–471. https://doi.org/10.1007/s10658-011-9920-1. (PMID: 10.1007/s10658-011-9920-1)
Kuki MC, Scapim CA, Rossi ES, Mangolin CA, Amaral Júnior ATD, Pinto RJB (2018) Genome wide association study for gray leaf spot resistance in tropical maize core. PLoS ONE 13:e0199539. https://doi.org/10.1371/journal.pone.0199539. (PMID: 10.1371/journal.pone.0199539299534666023161)
Lapaire CL, Dunkle LD (2003) Microcycle conidiation in Cercospora zeae-maydis. Phytopathology 93:193–199. https://doi.org/10.1094/phyto.2003.93.2.193. (PMID: 10.1094/phyto.2003.93.2.19318943134)
Lee C, Zhong R, Ye ZH (2012) Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant Cell Physiol 53:135–143. https://doi.org/10.1093/pcp/pcr158. (PMID: 10.1093/pcp/pcr15822080591)
Lee C, Teng Q, Zhong R, Yuan Y, Ye ZH (2014) Functional roles of rice glycosyltransferase family GT43 in xylan biosynthesis. Plant Signal Behav 9:e27809. https://doi.org/10.4161/psb.27809. (PMID: 10.4161/psb.27809245259044091335)
Lennon JR, Krakowsky M, Goodman M, Flint-Garcia S, Balint-Kurti PJ (2016) Identification of alleles conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop Sci 56:209–218. https://doi.org/10.2135/cropsci2014.07.0468. (PMID: 10.2135/cropsci2014.07.0468)
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324. (PMID: 10.1093/bioinformatics/btp324194511682705234)
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352. (PMID: 10.1093/bioinformatics/btp352195059432723002)
Li X, Bai T, Li Y, Ruan X, Li H (2013) Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4 inoculated response to Fusarium wilts in the banana root cells. Proteome Sci 11:41. https://doi.org/10.1186/1477-5956-11-41. (PMID: 10.1186/1477-5956-11-41240700623850410)
Li C, Guan H, Jing X, Li Y, Wang B, Li Y, Liu X, Zhang D et al (2022) Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding. Nat Plants 8:750–763. https://doi.org/10.1038/s41477-022-01190-2. (PMID: 10.1038/s41477-022-01190-235851624)
Liang Z, Duan S, Sheng J, Zhu S, Ni X, Shao J, Liu C, Nick P et al (2019) Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat Commun 10:1190. https://doi.org/10.1038/s41467-019-09135-8. (PMID: 10.1038/s41467-019-09135-8308674146416300)
Liu KJ, Xu XD (2013) First report of gray leaf spot of maize caused by Cercospora zeina in China. Plant Dis 97:1656. https://doi.org/10.1094/pdis-03-13-0280-pdn. (PMID: 10.1094/pdis-03-13-0280-pdn30716816)
Lu Y, Shah T, Hao Z, Taba S, Zhang S, Gao S, Liu J, Cao M, Wang J, Prakash AB, Rong T, Xu Y (2011) Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize. PLoS ONE 6:e24861. https://doi.org/10.1371/journal.pone.0024861. (PMID: 10.1371/journal.pone.0024861219497703174237)
Mammadov J, Sun X, Gao Y, Ochsenfeld C, Bakker E, Ren R, Flora J, Wang X, Kumpatla S, Meyer D, Thompson S (2015) Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.). BMC Genomics 16:916. https://doi.org/10.1186/s12864-015-2171-3. (PMID: 10.1186/s12864-015-2171-3265557314641357)
Maroof MAS, Scoyoc SWV, Yu YG, Stromberg EL (1993) Gray leaf spot disease of maize: rating methodology and inbred line evaluation. Plant Dis 77:583–587. (PMID: 10.1094/PD-77-0583)
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110. (PMID: 10.1101/gr.107524.110206441992928508)
McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740. https://doi.org/10.1126/science.1174320. (PMID: 10.1126/science.117432019661427)
Menkir A, Ayodele M (2005) Genetic analysis of resistance to gray leaf spot of midaltitude maize inbred lines. Crop Sci 45:163–170. https://doi.org/10.2135/cropsci2005.0163a. (PMID: 10.2135/cropsci2005.0163a)
Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut JM (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930. https://doi.org/10.1007/s00122-009-1099-x. (PMID: 10.1007/s00122-009-1099-x19597726)
Munkvold GP, Martinson CA, Shriver JM, Dixon PM (2001) Probabilities for profitable fungicide use against gray leaf spot in hybrid maize. Phytopathology 91:477–484. https://doi.org/10.1094/phyto.2001.91.5.477. (PMID: 10.1094/phyto.2001.91.5.47718943592)
Neuefeind T, Reinemer P, Bieseler B (1997) Plant glutathione S-transferases and herbicide detoxification. Biol Chem 378:199–205. (PMID: 9165071)
Omondi DO, Dida MM, Berger DK, Beyene Y, Nsibo DL, Juma C, Mahabaleswara SL, Gowda M (2023) Combination of linkage and association mapping with genomic prediction to infer QTL regions associated with gray leaf spot and northern corn leaf blight resistance in tropical maize. Front Genet 14:1282673. https://doi.org/10.3389/fgene.2023.1282673. (PMID: 10.3389/fgene.2023.12826733802859810661943)
Pang S, Duan L, Liu Z, Song X, Li X, Wang C (2012) Co-induction of a glutathione-S-transferase, a glutathione transporter and an ABC transporter in maize by xenobiotics. PLoS ONE 7:e40712. https://doi.org/10.1371/journal.pone.0040712. (PMID: 10.1371/journal.pone.0040712227923983394700)
Paul PA, Munkvold GP (2005) Influence of temperature and relative humidity on sporulation of Cercospora zeae-maydis and expansion of gray leaf spot lesions on maize leaves. Plant Dis 89:624–630. https://doi.org/10.1094/pd-89-0624. (PMID: 10.1094/pd-89-062430795388)
Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. https://doi.org/10.1371/journal.pone.0032253. (PMID: 10.1371/journal.pone.0032253223896903289635)
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795. (PMID: 10.1086/519795177019011950838)
Qiu H, Li C, Yang W, Tan K, Yi Q, Yang M, Bai G (2021) Fine mapping of a new major QTL-qGLS8 for gray leaf spot resistance in maize. Front Plant Sci 12:743869. https://doi.org/10.3389/fpls.2021.743869. (PMID: 10.3389/fpls.2021.743869346033638484643)
Raizada MN, Benito MI, Walbot V (2001) The MuDR transposon terminal inverted repeat contains a complex plant promoter directing distinct somatic and germinal programs. Plant J 25:79–91. https://doi.org/10.1046/j.1365-313x.2001.00939.x. (PMID: 10.1046/j.1365-313x.2001.00939.x11169184)
Sahito JH, Zhang H, Gishkori ZGN, Ma C, Wang Z, Ding D, Zhang X, Tang J (2024) Advancements and prospects of genome-wide association studies (GWAS) in maize. Int J Mol Sci 25:1918. https://doi.org/10.3390/ijms25031918. (PMID: 10.3390/ijms250319183833919610855973)
Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Harvey Millar A, Singh KB (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J 58:53–68. https://doi.org/10.1111/j.1365-313X.2008.03761.x. (PMID: 10.1111/j.1365-313X.2008.03761.x19067976)
Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289. https://doi.org/10.1146/annurev-arplant-042809-112315. (PMID: 10.1146/annurev-arplant-042809-11231520192742)
Shim WB, Dunkle LD (2003) CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis. Mol Plant Microbe Interact 16:760–768. https://doi.org/10.1094/mpmi.2003.16.9.760. (PMID: 10.1094/mpmi.2003.16.9.76012971599)
Stange M, Utz HF, Schrag TA, Melchinger AE, Würschum T (2013) High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations. Theor Appl Genet 126:2563–2574. https://doi.org/10.1007/s00122-013-2155-0. (PMID: 10.1007/s00122-013-2155-023860723)
Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–750. (PMID: 8512694)
Su W, Gu X, Peterson T (2019) TIR-learner, a new ensemble method for TIR transposable element annotation, provides evidence for abundant new transposable elements in the maize genome. Mol Plant 12:447–460. https://doi.org/10.1016/j.molp.2019.02.008. (PMID: 10.1016/j.molp.2019.02.00830802553)
Sul JH, Martin LS, Eskin E (2018) Population structure in genetic studies: confounding factors and mixed models. PLoS Genet 14:e1007309. https://doi.org/10.1371/journal.pgen.1007309. (PMID: 10.1371/journal.pgen.1007309305898516307707)
Sun H, Zhai L, Teng F, Li Z, Zhang Z (2021) qRgls1.06, a major QTL conferring resistance to gray leaf spot disease in maize. Crop J 9:342–350. https://doi.org/10.1016/j.cj.2020.08.001. (PMID: 10.1016/j.cj.2020.08.001)
Trenner J, Monaghan J, Saeed B, Quint M, Shabek N, Trujillo M (2022) Evolution and functions of plant U-Box proteins: from protein quality control to signaling. Annu Rev Plant Biol 73:93–121. https://doi.org/10.1146/annurev-arplant-102720-012310. (PMID: 10.1146/annurev-arplant-102720-01231035226816)
Ulloa M, Meredith WR Jr, Shappley ZW, Kahler AL (2002) RFLP genetic linkage maps from four F(2.3) populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet 104:200–208. https://doi.org/10.1007/s001220100739. (PMID: 10.1007/s00122010073912582687)
Vasal SK, Srinivasan G, Crossa J, Beck DL (1992) Heterosis and combining ability of CIMMYT’s subtropical and temperate early-maturity maize germplasm. Crop Sci 32:884–490. https://doi.org/10.2135/cropsci1992.0011183X003200040010x. (PMID: 10.2135/cropsci1992.0011183X003200040010x)
Wallace JG, Larsson SJ, Buckler ES (2014) Entering the second century of maize quantitative genetics. Heredity (Edinb) 112:30–38. https://doi.org/10.1038/hdy.2013.6. (PMID: 10.1038/hdy.2013.623462502)
Wang B, Lin Z, Li X, Zhao Y, Zhao B, Wu G, Ma X, Wang H et al (2020a) Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet 52:565–571. https://doi.org/10.1038/s41588-020-0616-3. (PMID: 10.1038/s41588-020-0616-332341525)
Wang N, Yuan Y, Wang H, Yu D, Liu Y, Zhang A, Gowda M, Nair SK, Hao Z, Lu Y, San Vicente F, Prasanna BM, Li X, Zhang X (2020b) Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding. Sci Rep 10:16308. https://doi.org/10.1038/s41598-020-73321-8. (PMID: 10.1038/s41598-020-73321-8330048747530987)
Wang Y, Wu Y, Zhong H, Chen S, Wong KB, Xia Y (2022) Arabidopsis PUB2 and PUB4 connect signaling components of pattern-triggered immunity. New Phytol 233:2249–2265. https://doi.org/10.1111/nph.17922. (PMID: 10.1111/nph.1792234918346)
Ward JMJ, Stromberg EL, Nowell DC, Nutter FW Jr (1999) Gray leaf spot: a disease of global importance in maize production. Plant Dis 83:884–895. https://doi.org/10.1094/pdis.1999.83.10.884. (PMID: 10.1094/pdis.1999.83.10.88430841068)
Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M, Nelson RJ, Balint-Kurti PJ (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci U S A 108:7339–7344. https://doi.org/10.1073/pnas.1011739108. (PMID: 10.1073/pnas.1011739108214903023088610)
Wu AM, Hörnblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol 153:542–554. https://doi.org/10.1104/pp.110.154971. (PMID: 10.1104/pp.110.154971204240052879767)
Xiao Y, Liu H, Wu L, Warburton M, Yan J (2017) Genome-wide association studies in maize: praise and stargaze. Mol Plant 10:359–374. https://doi.org/10.1016/j.molp.2016.12.008. (PMID: 10.1016/j.molp.2016.12.00828039028)
Xu L, Zhang Y, Shao S, Chen W, Tan J, Zhu M, Zhong T, Fan X, Xu M (2014) High-resolution mapping and characterization of qRgls2, a major quantitative trait locus involved in maize resistance to gray leaf spot. BMC Plant Biol 14:230. https://doi.org/10.1186/s12870-014-0230-6. (PMID: 10.1186/s12870-014-0230-6251745894175277)
Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82. https://doi.org/10.1016/j.ajhg.2010.11.011. (PMID: 10.1016/j.ajhg.2010.11.011211674683014363)
Yu Y, Shi J, Li X, Liu J, Geng Q, Shi H, Ke Y, Sun Q (2018) Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize. BMC Genomics 19:742. https://doi.org/10.1186/s12864-018-5072-4. (PMID: 10.1186/s12864-018-5072-4303050156180411)
Yu G, Derkacheva M, Rufian JS, Brillada C, Kowarschik K, Jiang S, Derbyshire P, Ma M et al (2022) The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type III effector. EMBO J 41:e107257. https://doi.org/10.15252/embj.2020107257. (PMID: 10.15252/embj.2020107257363147339713774)
Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468. https://doi.org/10.1093/genetics/136.4.1457. (PMID: 10.1093/genetics/136.4.145780139181205924)
Zerillo MM, Adhikari BN, Hamilton JP, Buell CR, Lévesque CA, Tisserat N (2013) Carbohydrate-active enzymes in pythium and their role in plant cell wall and storage polysaccharide degradation. PLoS ONE 8:e72572. https://doi.org/10.1371/journal.pone.0072572. (PMID: 10.1371/journal.pone.0072572240691503772060)
Zhang C, Dong SS, Xu JY, He WM, Yang TL (2019) PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35:1786–1788. https://doi.org/10.1093/bioinformatics/bty875. (PMID: 10.1093/bioinformatics/bty87530321304)
Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824. https://doi.org/10.1038/ng.2310. (PMID: 10.1038/ng.2310227063123386377)
Zhu Y, Liu Y, Zhou K, Tian C, Aslam M, Zhang B, Liu W, Zou H (2022) Overexpression of ZmEREBP60 enhances drought tolerance in maize. J Plant Physiol 275:153763. https://doi.org/10.1016/j.jplph.2022.153763. (PMID: 10.1016/j.jplph.2022.15376335839657)
Zwonitzer JC, Coles ND, Krakowsky MD, Arellano C, Holland JB, McMullen MD, Pratt RC, Balint-Kurti PJ (2010) Mapping resistance quantitative trait Loci for three foliar diseases in a maize recombinant inbred line population-evidence for multiple disease resistance? Phytopathology 100:72–79. https://doi.org/10.1094/phyto-100-1-0072. (PMID: 10.1094/phyto-100-1-007219968551) - Grant Information: 31961143014 National Natural Science Foundation of China; 530000210000000013809 the Food Security and Seed Industry Support Project of Yunnan Province
- Publication Date: Date Created: 20241112 Date Completed: 20241112 Latest Revision: 20241206
- Publication Date: 20241209
- Accession Number: PMC11557642
- Accession Number: 10.1007/s00122-024-04764-0
- Accession Number: 39532720
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.