Sex differences in the human brain related to visual motion perception.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101548963 Publication Model: Electronic Cited Medium: Internet ISSN: 2042-6410 (Electronic) Linking ISSN: 20426410 NLM ISO Abbreviation: Biol Sex Differ Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, 2010-
    • Subject Terms:
    • Abstract:
      Background: Previous studies have found that the temporal duration required for males to perceive visual motion direction is significantly shorter than that for females. However, the neural correlates of such shortened duration perception remain yet unclear. Given that motion perception is primarily associated with the neural activity of the middle temporal visual complex (MT+), we here test the novel hypothesis that the neural mechanism of these behavioral sex differences is mainly related to the MT+ region.
      Methods: We utilized ultra-high field (UHF) MRI to investigate sex differences in the MT+ brain region. A total of 95 subjects (48 females) participated in two separate studies. Cohort 1, consisting of 33 subjects (16 females), completed task-fMRI (drafting grating stimuli) experiment. Cohort 2, comprising 62 subjects (32 females), engaged in a psychophysical experiment measuring motion perception along different temporal thresholds as well as conducting structural and functional MRI scanning of MT+.
      Results: Our findings show pronounced sex differences in major brain parameters within the left MT+ (but not the right MT+, i.e., laterality). In particular, males demonstrate (i) larger gray matter volume (GMV) and higher brain's spontaneous activity at the fastest infra-slow frequency band in the left MT+; and (ii) stronger functional connectivity between the left MT+ and the left centromedial amygdala (CM). Meanwhile, both female and male participants exhibited comparable correlations between motion perception ability and the multimodal imaging indexes of the MT+ region, i.e., larger GMV, higher brain's spontaneous activity, and faster motion discrimination.
      Conclusions: Our findings reveal sex differences of imaging indicators of structure and function in the MT+ region, which also relate to the temporal threshold of motion discrimination. Overall, these results show how behavioral sex differences in visual motion perception are generated, and advocate considering sex as a crucial biological variable in both human brain and behavioral research.
      Competing Interests: Declarations Ethics approval and consent to participate All procedures were approved by the Ethics Review Committee of Zhejiang University, and conducted in accordance with the Helsinki Declaration. Consent for publication Not applicable. Competing interests The authors declare no competing interests.
      (© 2024. The Author(s).)
    • References:
      Neuroimage. 2009 Apr 1;45(2):614-26. (PMID: 19110061)
      Biol Sex Differ. 2023 Nov 14;14(1):84. (PMID: 37964327)
      Wiley Interdiscip Rev Cogn Sci. 2016 Mar-Apr;7(2):127-55. (PMID: 26825049)
      Anat Embryol (Berl). 2005 Dec;210(5-6):343-52. (PMID: 16208455)
      J Neurosci. 2009 Jul 15;29(28):9072-7. (PMID: 19605644)
      J Neurosci. 2006 Nov 1;26(44):11403-12. (PMID: 17079669)
      Elife. 2024 Oct 01;13:. (PMID: 39352734)
      NMR Biomed. 1997 Jun-Aug;10(4-5):171-8. (PMID: 9430344)
      Arch Sex Behav. 2007 Apr;36(2):261-8. (PMID: 17351740)
      Spat Vis. 1997;10(4):433-6. (PMID: 9176952)
      J Neurosci Res. 2017 Jan 2;95(1-2):189-199. (PMID: 27870413)
      Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5257-8. (PMID: 25902532)
      Nat Rev Neurosci. 2017 Dec;18(12):707-708. (PMID: 29097784)
      J Neurosci. 2013 May 8;33(19):8243-9. (PMID: 23658163)
      Nature. 2003 Jul 17;424(6946):312-5. (PMID: 12867982)
      Neuropsychologia. 2012 Jun;50(7):1578-93. (PMID: 22450197)
      Cell. 2017 Jan 12;168(1-2):311-324.e18. (PMID: 28086095)
      Ann N Y Acad Sci. 2003 Apr;985:50-8. (PMID: 12724147)
      Neuroinformatics. 2016 Jul;14(3):339-51. (PMID: 27075850)
      Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18788-18798. (PMID: 32690678)
      Mol Psychiatry. 2001 Jan;6(1):13-34. (PMID: 11244481)
      J Comp Neurol. 2006 Jun 10;496(5):655-67. (PMID: 16615120)
      Annu Rev Neurosci. 2005;28:157-89. (PMID: 16022593)
      Neurosci Biobehav Rev. 2006;30(2):126-47. (PMID: 16183121)
      Science. 2004 Jun 25;304(5679):1926-9. (PMID: 15218136)
      Nat Rev Neurosci. 2006 Jun;7(6):477-84. (PMID: 16688123)
      Prog Neurobiol. 2022 Jul;214:102283. (PMID: 35533810)
      Neuroscience. 2003;118(4):1099-120. (PMID: 12732254)
      Curr Biol. 2018 Sep 10;28(17):2794-2799.e3. (PMID: 30122530)
      Curr Eye Res. 2015 Feb;40(2):110-27. (PMID: 25153712)
      Behav Brain Res. 2006 Oct 16;173(2):181-90. (PMID: 16887201)
      Neuron. 2015 Dec 16;88(6):1084-1085. (PMID: 26687218)
      Physiol Rev. 2003 Jul;83(3):803-34. (PMID: 12843409)
      Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8142-7. (PMID: 26080410)
      Cereb Cortex. 2018 Aug 1;28(8):2959-2975. (PMID: 29771288)
      Neuroimage. 2012 Jul 16;61(4):931-40. (PMID: 22498657)
      Neuroimage. 2002 Jul;16(3 Pt 1):663-77. (PMID: 12169251)
      Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):823-8. (PMID: 24297904)
      Cereb Cortex. 2022 May 14;32(10):2129-2139. (PMID: 34613359)
      Brain Lang. 2006 Aug;98(2):150-8. (PMID: 16716389)
      J Affect Disord. 2002 Sep;71(1-3):1-9. (PMID: 12167495)
      Suppl Clin Neurophysiol. 2003;56:291-304. (PMID: 14677406)
      J Comp Neurol. 1984 Dec 20;230(4):465-96. (PMID: 6520247)
      Biol Sex Differ. 2022 Jul 26;13(1):43. (PMID: 35883159)
      Annu Rev Psychol. 2014;65:373-98. (PMID: 23808917)
      Brain Dev. 2007 Mar;29(2):83-91. (PMID: 16919409)
      Nature. 1995 Feb 16;373(6515):607-9. (PMID: 7854416)
      Neuroimage. 2012 May 1;60(4):2054-61. (PMID: 22374477)
      Cereb Cortex. 2023 Apr 25;33(9):5055-5065. (PMID: 36190444)
      Cereb Cortex. 2001 Jun;11(6):490-7. (PMID: 11375910)
      J Neurosci. 2007 Feb 7;27(6):1356-64. (PMID: 17287510)
      Sci Rep. 2016 Mar 23;6:23112. (PMID: 27004933)
      Neuroimage. 2010 Jan 15;49(2):1432-45. (PMID: 19782143)
      Mol Psychiatry. 2021 Nov;26(11):6747-6755. (PMID: 33863994)
      Front Psychiatry. 2021 Oct 25;12:589687. (PMID: 34759845)
      Nat Neurosci. 2004 Apr;7(4):411-6. (PMID: 15004563)
      Am Psychol. 2005 Sep;60(6):581-592. (PMID: 16173891)
      Nat Rev Neurosci. 2007 Sep;8(9):700-11. (PMID: 17704812)
      Electroencephalogr Clin Neurophysiol Suppl. 1999;51:334-50. (PMID: 10590967)
      Magn Reson Med. 1996 Mar;35(3):346-55. (PMID: 8699946)
      Elife. 2018 Jan 29;7:. (PMID: 29376822)
      J Neurosci. 2011 Jan 26;31(4):1279-83. (PMID: 21273412)
      Nat Neurosci. 2004 Nov;7(11):1271-8. (PMID: 15494727)
      Biol Sex Differ. 2012 Sep 04;3(1):20. (PMID: 22943466)
    • Grant Information:
      2024SSYS0019 the key R&D program of zhejiang; 2022C03096 the key R&D program of zhejiang; 82272112 the national natural science foundation of china grants; 62076248 the national natural science foundation of china grants; 52293424 the national natural science foundation of china grants; LR23E070001 zhejiang proveincial natural science foundation of china
    • Contributed Indexing:
      Keywords: Amplitude of low-frequency fluctuations; Gray matter volume; Human MT complex; Motion perception; Sex differences
      Local Abstract: [plain-language-summary] There are sex differences in visuospatial abilities between males and females, including the visual perception of motion information. However, the neural mechanism of these sex differences in motion perception remains yet unclear. To explore this question, we employed the joint task probing motion perception and ultra-high field (UHF) MRI. We found that the motion discrimination was faster in males compared to females. The sex differences were also prominent in major brain parameters in the MT+ region (the function brain regions of motion perception). Males demonstrate (i) larger gray matter volume (GMV) and higher brain’s spontaneous activity in the left MT+ (but not right MT+, i.e., laterality); (ii) stronger functional connectivity between the left MT+ and the left centromedial amygdala (CM). Additionally, we observed that female and male participants exhibited comparable correlations between motion perception ability and the multimodal imaging indexes in the MT+ region, i.e., the larger GMV, the higher brain’s spontaneous activity, and the faster motion discrimination. These results suggest that the sex differences in the structure and function of the MT+ region are the neural mechanism underlying the behavioral-level sex differences in motion perception. We demonstrate sex differences in the healthy human MT+ of the brain, possibly leading to sex differences in visual perception. This strongly support the consideration of sex as a crucial biological variable in both human brain and behavioral research.
    • Publication Date:
      Date Created: 20241112 Date Completed: 20241112 Latest Revision: 20241116
    • Publication Date:
      20241116
    • Accession Number:
      PMC11552312
    • Accession Number:
      10.1186/s13293-024-00668-2
    • Accession Number:
      39529200