Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
2 p.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 1 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
2 p.m. - 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Investigation of the ability of 3-((4-chloro-6-methyl pyrimidin-2-yl)amino) isobenzofuran-1(3H)-one to bind to double-stranded deoxyribonucleic acid.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Şenel P;Şenel P; Al Faysal A; Al Faysal A; Yilmaz Z; Yilmaz Z; Erdoğan T; Erdoğan T; Odabaşoğlu M; Odabaşoğlu M; Gölcü A; Gölcü A
- Source:
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology [Photochem Photobiol Sci] 2024 Nov; Vol. 23 (11), pp. 2107-2121. Date of Electronic Publication: 2024 Nov 10.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer Country of Publication: England NLM ID: 101124451 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1474-9092 (Electronic) Linking ISSN: 1474905X NLM ISO Abbreviation: Photochem Photobiol Sci Subsets: MEDLINE
- Publication Information: Publication: 2021- : [London] : Springer
Original Publication: Cambridge, UK : Royal Society of Chemistry, c2002- - Subject Terms:
- Abstract: Phthalides represent a notable category of secondary metabolites that are prevalent in various plant species, certain fungi, and liverworts. The significant pharmacological properties of these compounds have led to the synthesis of a novel phthalide derivative. The current study focuses on investigating the binding interactions of a newly synthesized 3-substituted phthalide derivative, specifically 3-((4-chloro-6-methyl pyrimidine-2-yl)amino) isobenzofuran-1(3H)-one (Z11), with double-stranded deoxyribonucleic acid (dsDNA). Research in the pharmaceutical and biological fields aimed at developing more potent DNA-binding agents must take into account the mechanisms by which these newly synthesized compounds interact with DNA. This investigation seeks to explore the binding dynamics between dsDNA and our compound through a variety of analytical techniques, such as electrochemistry, UV spectroscopy, fluorescence spectroscopy, and thermal denaturation. The binding constant (K
b ) of Z11 with DNA was determined using both spectroscopic and voltammetric approaches. The research revealed that Z11 employs a groove binding mechanism to associate with dsDNA. To further explore the interactions between Z11 and dsDNA, the study utilized density functional theory (DFT) calculations, molecular docking, and molecular dynamics simulations. These analyses aimed to ascertain the potential for a stable complex formation between Z11 and dsDNA. The results indicate that Z11 is situated within the minor groove of the dsDNA, demonstrating the ability to establish a stable complex. Furthermore, the findings imply that both π-alkyl interactions and hydrogen bonding play significant roles in the stabilization of this complex.
Competing Interests: Declarations Conflict of interest The authors report there are no conflict of interests to declare.
(© 2024. The Author(s), under exclusive licence to the European Photochemistry Association, European Society for Photobiology.) - References: Ogawa, Y., Tokunaga, E., Kobayashi, O., Hirai, K., & Shibata, N. (2020). Current contributions of organofluorine compounds to the agrochemical industry. iScience, 23, 101467. https://doi.org/10.1016/j.isci.2020.101467. (PMID: 10.1016/j.isci.2020.101467328910567479632)
Qadir, T., Amin, A., Sharma, P. K., Jeelani, I., & Abe, H. (2022). A review on medicinally important heterocyclic compounds. The Open Medicinal Chemistry Journal. https://doi.org/10.2174/18741045-v16-e2202280. (PMID: 10.2174/18741045-v16-e2202280)
Jampilek, J. (2019). Heterocycles in medicinal chemistry. Molecules, 24, 3839. https://doi.org/10.3390/molecules24213839. (PMID: 10.3390/molecules24213839317313876864827)
Kabir, E., & Uzzaman, M. (2022). A review on biological and medicinal impact of heterocyclic compounds. Results in Chemistry, 4, 100606. https://doi.org/10.1016/j.rechem.2022.100606. (PMID: 10.1016/j.rechem.2022.100606)
Yılmaz, Z. T., Yasin Odabaşoğlu, H., Şenel, P., Adımcılar, V., Erdoğan, T., Özdemir, A. D., Gölcü, A., Odabaşoğlu, M., & Büyükgüngör, O. (2020). Investigations on crystal structure of a novel 3-((4,6-dimethylpyrimidin-2-yl)amino)isobenzofuran-1(3H)-one, and related theoretical studies. Arabian Journal of Chemistry, 13, 5564–5580. https://doi.org/10.1016/j.arabjc.2020.03.013. (PMID: 10.1016/j.arabjc.2020.03.013)
Awasthi, A., Singh, M., Rathee, G., & Chandra, R. (2020). Recent advancements in synthetic methodologies of 3-substituted phthalides and their application in the total synthesis of biologically active natural products. RSC Advances, 10, 12626–12652. https://doi.org/10.1039/D0RA00701C. (PMID: 10.1039/D0RA00701C354976269051324)
Wei, X., Zeng, Y., Sun, C., Meng, F., & Wang, Y. (2022). Recent advances in natural phthalides: Distribution, chemistry, and biological activities. Fitoterapia, 160, 105223. https://doi.org/10.1016/j.fitote.2022.105223. (PMID: 10.1016/j.fitote.2022.10522335654379)
Tan, Y.-Z., Yan, H.-L., Liu, Y.-Y., Yan, Y.-M., Wang, L., Qiao, J.-X., Jing, W., Tian, Y., & Peng, C. (2024). Structurally diverse phthalides from fibrous roots of Ligusticum chuanxiong Hort and their biological activities. Fitoterapia, 175, 105882. https://doi.org/10.1016/j.fitote.2024.105882. (PMID: 10.1016/j.fitote.2024.10588238452906)
Qu, M., Zhao, J., Zhao, Y., Sun, J., Liu, L., Wei, L., & Zhang, Y. (2021). Vascular protection and regenerative effects of intranasal DL-3-N-butylphthalide treatment after ischaemic stroke in mice. Stroke and Vascular Neurology, 6, 74–79. https://doi.org/10.1136/svn-2020-000364. (PMID: 10.1136/svn-2020-00036432958696)
Fang, X., Ma, Q., Feng, Yi., & Liang, S. (2020). (±)-6-3’a,7–6’-Isowallichilide: A pair of enantiomeric phthalide dimers from Ligusticum chuanxiong with new 6–3’a,7–6’ dimerization sites. Chinese Chemical Letters, 31, 1251–1253. https://doi.org/10.1016/j.cclet.2019.12.012. (PMID: 10.1016/j.cclet.2019.12.012)
Rodríguez-Expósito, R. L., Reyes-Batlle, M., Sifaoui, I., Tejedor, D., García-Tellado, F., Piñero, J. E., & Lorenzo-Morales, J. (2022). Isobenzofuran-1(3H)-one derivatives: Amoebicidal activity and program cell death in Acanthamoeba castellanii Neff. Biomedicine & Pharmacotherapy, 150, 113062. https://doi.org/10.1016/j.biopha.2022.113062. (PMID: 10.1016/j.biopha.2022.113062)
De Padua, J. C., Fukushima-Sakuno, E., Ueno, K., Thomas Edison, E., Cruz, D., & Ishihara, A. (2023). Isolation, structure elucidation, and biological activities of sesquiterpenes and phthalides from two edible mushrooms Pleurotus species. Bioscience Biotechnology and Biochemistry, 87, 1429–1441. https://doi.org/10.1093/bbb/zbad126. (PMID: 10.1093/bbb/zbad12637667536)
Zou, J., Chen, G.-D., Zhao, H., Huang, Y., Luo, X., Wei, Xu., He, R.-R., Dan, Hu., Yao, X.-S., & Gao, H. (2018). Triligustilides A and B: Two Pairs of Phthalide Trimers from Angelica sinensis with a Complex Polycyclic Skeleton and Their Activities. Organic Letters, 20, 884–887. https://doi.org/10.1021/acs.orglett.8b00017. (PMID: 10.1021/acs.orglett.8b0001729360378)
Shahabadi, N., & Zendehcheshm, S. (2020). Evaluation of ct-DNA and HSA binding propensity of antibacterial drug chloroxine: Multi-spectroscopic analysis, atomic force microscopy and docking simulation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 230, 118042. https://doi.org/10.1016/j.saa.2020.118042. (PMID: 10.1016/j.saa.2020.11804231972466)
Venugopal, S., Sharma, V., Mehra, A., Singh, I., & Singh, G. (2022). DNA intercalators as anticancer agents. Chemical Biology and Drug Design, 100, 580–598. https://doi.org/10.1111/cbdd.14116. (PMID: 10.1111/cbdd.1411635822451)
Mukhija, A. (2022). Influence of oxidative stress on drug-DNA binding: Microcalorimetric and mechanistic insights with anticancer drugs. Journal of Molecular Liquids, 368, 120769. https://doi.org/10.1016/j.molliq.2022.120769. (PMID: 10.1016/j.molliq.2022.120769)
Siddiqui, S., Mujeeb, A., Ameen, F., Ishqi, H. M., Rehman, S. U., & Tabish, M. (2021). Investigating the mechanism of binding of nalidixic acid with deoxyribonucleic acid and serum albumin: A biophysical and molecular docking approaches. Journal of Biomolecular Structure and Dynamics, 39, 570–585. https://doi.org/10.1080/07391102.2020.1711808. (PMID: 10.1080/07391102.2020.171180831910794)
Khajeh, M. A., Dehghan, G., Dastmalchi, S., Shaghaghi, M., & Iranshahi, M. (2018). Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192, 384–392. https://doi.org/10.1016/j.saa.2017.11.042. (PMID: 10.1016/j.saa.2017.11.04229195192)
Shi, J.-H., Zhou, K.-L., Lou, Y.-Y., & Pan, D.-Q. (2018). Multi-spectroscopic and molecular docking studies on the interaction of darunavir, a HIV protease inhibitor with calf thymus DNA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 14–22. https://doi.org/10.1016/j.saa.2017.11.061. (PMID: 10.1016/j.saa.2017.11.06129212044)
Shakibapour, N., Sani, F. D., Beigoli, S., Sadeghian, H., & Chamani, J. (2019). Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: Binary and ternary approaches. Journal of Biomolecular Structure and Dynamics, 37, 359–371. https://doi.org/10.1080/07391102.2018.1427629. (PMID: 10.1080/07391102.2018.142762929338579)
Ponkarpagam, S., Mahalakshmi, G., Vennila, K. N., & Elango, K. P. (2022). Concentration-dependent mode of binding of drug oxatomide with DNA: Multi-spectroscopic, voltammetric and metadynamics simulation analysis. Journal of Biomolecular Structure and Dynamics, 40, 8394–8404. https://doi.org/10.1080/07391102.2021.1911860. (PMID: 10.1080/07391102.2021.191186033896411)
Rosu, F., De Pauw, E., & Gabelica, V. (2008). Electrospray mass spectrometry to study drug-nucleic acids interactions. Biochimie, 90, 1074–1087. https://doi.org/10.1016/j.biochi.2008.01.005. (PMID: 10.1016/j.biochi.2008.01.00518261993)
Figueroa-DePaz, Y., Resendiz-Acevedo, K., Dávila-Manzanilla, S. G., García-Ramos, J. C., Ortiz-Frade, L., Serment-Guerrero, J., & Ruiz-Azuara, L. (2022). DNA, a target of mixed chelate copper(II) compounds (Casiopeinas®) studied by electrophoresis, UV–vis and circular dichroism techniques. Journal of Inorganic Biochemistry, 231, 111772. https://doi.org/10.1016/j.jinorgbio.2022.111772. (PMID: 10.1016/j.jinorgbio.2022.11177235279445)
Yılmaz, Z. T., Yasin Odabaşoğlu, H., Şenel, P., Adımcılar, V., Erdoğan, T., Özdemir, A. D., Gölcü, A., & Odabaşoğlu, M. (2020). A novel 3-((5-methylpyridin-2-yl)amino)isobenzofuran-1(3H)-one: Molecular structure describe, X-ray diffractions and DFT calculations, antioxidant activity, DNA binding and molecular docking studies. Journal of Molecular Structure, 1205, 127585. https://doi.org/10.1016/j.molstruc.2019.127585. (PMID: 10.1016/j.molstruc.2019.127585)
Daravath, S., Rambabu, A., Ganji, N., Gali Ramesh, P. V., & Lakshmi, P. A. (2022). Spectroscopic, quantum chemical calculations, antioxidant, anticancer, antimicrobial, DNA binding and photo physical properties of bioactive Cu(II) complexes obtained from trifluoromethoxy aniline Schiff bases. Journal of Molecular Structure, 1249, 131601. https://doi.org/10.1016/j.molstruc.2021.131601. (PMID: 10.1016/j.molstruc.2021.131601)
Sankarganesh, M., Solomon, R. V., & Raja, J. D. (2021). Platinum complex with pyrimidine- and morpholine-based ligand: Synthesis, spectroscopic, DFT, TDDFT, catalytic reduction, in vitro anticancer, antioxidant, antimicrobial, DNA binding and molecular modeling studies. Journal of Biomolecular Structure and Dynamics, 39, 1055–1067. https://doi.org/10.1080/07391102.2020.1727364. (PMID: 10.1080/07391102.2020.172736432036758)
Bayraktepe, D. E. (2020). A voltammetric study on drug-DNA interactions: Kinetic and thermodynamic aspects of the relations between the anticancer agent dasatinib and ds-DNA using a pencil lead graphite electrode. Microchemical Journal, 157, 104946. https://doi.org/10.1016/j.microc.2020.104946. (PMID: 10.1016/j.microc.2020.104946)
Odabaşoğlu, M., & Büyükgüngör, O. (2006). 3-(4-Hydroxyanilino)isobenzofuran-1(3 H )-one. Acta Crystallographica Section E Structure Reports Online, 62, o1879–o1881. https://doi.org/10.1107/S1600536806013031. (PMID: 10.1107/S1600536806013031)
Zeynep Tanrikulu. 2019. Bazı 3-Sübstitüehetarilaminoftalitlerin Sentezi, Yapısal Özelliklerinin Spektroskopik, Deneysel X-Işını Kırınımı ve Teorik Yöntemlerle İncelenmesi. Yüksek Lisans Tezi, Denizli: Pamukkale Üniversitesi.
G. M. Sheldrick. 1997. Program for crystal structure solution and refinement. SHELXS-97 and SHELXL-97.
Farrugia, L. J. (1997). ORTEP -3 for Windows—a version of ORTEP -III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 30, 565–565. https://doi.org/10.1107/S0021889897003117. (PMID: 10.1107/S0021889897003117)
Mahler, H. R., Kline, B., & Mehrotra, B. D. (1964). Some observations on the hypochromism of DNA. Journal of Molecular Biology, 9, 801–811. https://doi.org/10.1016/S0022-2836(64)80186-8. (PMID: 10.1016/S0022-2836(64)80186-814216622)
Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of Molecular Biology, 3, 208-IN1. https://doi.org/10.1016/S0022-2836(61)80047-8. (PMID: 10.1016/S0022-2836(61)80047-8)
Khandelwal, G., & Bhyravabhotla, J. (2010). A Phenomenological Model for Predicting Melting Temperatures of DNA Sequences. PLoS ONE, 5, e12433. https://doi.org/10.1371/journal.pone.0012433. (PMID: 10.1371/journal.pone.0012433208651572928768)
Li, H., Mei, W.-J., Zhenghe, Xu., Pang, D.-W., Ji, L.-N., & Lin, Z.-H. (2007). Electrochemistry of a novel monoruthenated porphyrin and its interaction with DNA. Journal of Electroanalytical Chemistry, 600, 243–250. https://doi.org/10.1016/j.jelechem.2006.10.016. (PMID: 10.1016/j.jelechem.2006.10.016)
Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98, 5648–5652. https://doi.org/10.1063/1.464913. (PMID: 10.1063/1.464913)
Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B American Physical Society, 3, 785. https://doi.org/10.1103/PhysRevB.37.785. (PMID: 10.1103/PhysRevB.37.785)
Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105, 2999–3093. https://doi.org/10.1021/CR9904009/ASSET/IMAGES/MEDIUM/CR9904009E00092.GIF. (PMID: 10.1021/CR9904009/ASSET/IMAGES/MEDIUM/CR9904009E00092.GIF16092826)
Cancès, E., Mennucci, B., & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of Chemical Physics, 107, 3032–3041. https://doi.org/10.1063/1.474659. (PMID: 10.1063/1.474659)
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. https://doi.org/10.1186/1758-2946-4-17. (PMID: 10.1186/1758-2946-4-17228893323542060)
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., et al. (2013). Gaussian 09. Gaussian Inc.
R. Dennington, T. Keith, and J. Millam. 2009. GaussView, Version 5.
D.S. BIOVIA. 2016. Discovery Studio Visualizer, v20.1.0.19295.
Berman, H. M. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242. https://doi.org/10.1093/nar/28.1.235. (PMID: 10.1093/nar/28.1.23510592235102472)
Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., & Dickerson, R. E. (1981). Structure of a B-DNA dodecamer: Conformation and dynamics. Proceedings of the National Academy of Sciences, 78, 2179–2183. https://doi.org/10.1073/pnas.78.4.2179. (PMID: 10.1073/pnas.78.4.2179)
van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428, 720–725. https://doi.org/10.1016/j.jmb.2015.09.014. (PMID: 10.1016/j.jmb.2015.09.01426410586)
Honorato, R. V., Koukos, P. I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A., & Bonvin, A. M. (2021). Structural biology in the clouds: The WeNMR-EOSC ecosystem. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2021.729513. (PMID: 10.3389/fmolb.2021.729513343955348356364)
Der Spoel, V., David, E. L., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718. https://doi.org/10.1002/jcc.20291. (PMID: 10.1002/jcc.2029116211538)
Galindo-Murillo, R., Robertson, J. C., Zgarbová, M., Šponer, J., Otyepka, M., Jurečka, P., & Cheatham, T. E. (2016). Assessing the current state of amber force field modifications for DNA. Journal of Chemical Theory and Computation, 12, 4114–4127. https://doi.org/10.1021/acs.jctc.6b00186. (PMID: 10.1021/acs.jctc.6b00186273005874980684)
da Silva, S., Alan, W., & Vranken, W. F. (2012). ACPYPE—AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367. (PMID: 10.1186/1756-0500-5-367)
Benesi, H. A., & Hildebrand, J. H. (1949). A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 71, 2703–2707. https://doi.org/10.1021/ja01176a030. (PMID: 10.1021/ja01176a030)
Onur, S., Çeşme, M., Köse, M., & Tümer, F. (2022). New imino-methoxy derivatives: Design, synthesis, characterization, antimicrobial activity, DNA interaction and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 40, 11082–11094. https://doi.org/10.1080/07391102.2021.1955741. (PMID: 10.1080/07391102.2021.195574134355663)
Isika, D., Çeşme, M., Osonga, F. J., & Sadik, O. A. (2020). Novel quercetin and apigenin-acetamide derivatives: Design, synthesis, characterization, biological evaluation and molecular docking studies. RSC Advances, 10, 25046–25058. https://doi.org/10.1039/D0RA04559D. (PMID: 10.1039/D0RA04559D355174439055277)
Ponkarpagam, S., Vennila, K. N., & Elango, K. P. (2023). A closer look at the mode of binding of drug pemetrexed with CT-DNA. Journal of Biomolecular Structure and Dynamics, 41, 3553–3561. https://doi.org/10.1080/07391102.2022.2051747. (PMID: 10.1080/07391102.2022.205174735297322)
de Carvalho Bertozo, L., Tutone, M., Pastrello, B., da CarlosSilva-Filho, L., Culletta, G., Almerico, A. M., & Ximenes, V. F. (2023). Aminoquinolines: Fluorescent sensors to DNA—A minor groove probe Experimental and in silico studies. Journal of Photochemistry and Photobiology A Chemistry, 444, 114944. https://doi.org/10.1016/j.jphotochem.2023.114944. (PMID: 10.1016/j.jphotochem.2023.114944)
Stern, O., & Volmer, M. (1919). On the quenching-time of fluorescence. Physik Zeitschr, 20, 183–188.
Bi, S., Qiao, C., Song, D., Tian, Y., Gao, D., Sun, Y., & Zhang, H. (2006). Study of interactions of flavonoids with DNA using acridine orange as a fluorescence probe. Sensors and Actuators B Chemical, 119, 199–208. https://doi.org/10.1016/j.snb.2005.12.014. (PMID: 10.1016/j.snb.2005.12.014)
Bozal, B., Topal, B.-D., Uslu, B., Ozkan, S., & Aboul-Enein, H. (2012). Electrochemical study of the interaction between the antibacterial drug Gemifloxacin and dsDNA using pencil graphite electrode. Current Analytical Chemistry, 8, 528–533. https://doi.org/10.2174/157341112803216735. (PMID: 10.2174/157341112803216735)
Oliveira, S. C. B., Chiorcea-Paquim, A. M., Ribeiro, S. M., Melo, A. T. P., Vivan, M., & Oliveira-Brett, A. M. (2009). In situ electrochemical and AFM study of thalidomide–DNA interaction. Bioelectrochemistry, 76, 201–207. https://doi.org/10.1016/j.bioelechem.2009.03.003. (PMID: 10.1016/j.bioelechem.2009.03.00319386555) - Contributed Indexing: Keywords: Double strain deoxyribonucleic acid (dsDNA); Molecular docking; Phthalide; Spectroscopy; Thermal denaturation; Voltammetry
- Accession Number: 9007-49-2 (DNA)
0 (Benzofurans) - Publication Date: Date Created: 20241110 Date Completed: 20241118 Latest Revision: 20241118
- Publication Date: 20241118
- Accession Number: 10.1007/s43630-024-00655-x
- Accession Number: 39522116
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.