Graphene quantum dots modified electrodes as electrochemical sensing tool towards the detection of codeine in biological fluids and soft drinks.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: MEDLINE
    • Publication Information:
      Original Publication: Wien ; New York : Springer-Verlag.
    • Subject Terms:
    • Abstract:
      An electroanalytical method based on disposable screen-printed carbon electrodes modified with non-toxic carbonaceous nanodots is proposed as a reliable and effective device for codeine determination in biological fluids and soft drinks. Graphene quantum dots (GQDs), carbon quantum dots (CQDs) and carbon nanodots (CNDs) were evaluated as electrode modifiers for the determination of the drug. The electroactive areas of the modified electrodes were assessed by cyclic voltammetry using potassium ferricyanide. Results demonstrated that GQDs provided the best analytical response for codeine, displaying an intense and well-defined anodic wave approximately 0.9 V vs reference electrode. The method exhibits an acceptable linear dynamic range, low limits of detection and quantification (0.21 and 0.73 µM, respectively), and satisfactory precision (below 3.9% expressed as relative standard deviation (RSD)) in saliva. Only the analysis of biofluids requires a simple extraction protocol. The feasibility and applicability of this novel approach were assessed by determining codeine in different matrices, with recoveries ranging from 69 to 112%. This cost-effective, simple, easily miniaturised and portable method was applied not only to biofluids but also for the direct detection of codeine in soft drinks combined with a codeine-enriched syrup, a medication that is being used to adulterate beverages, particularly at specific events (drinking and nightclub parties). There is no need for any sample treatment, demonstrating its versatility in analysing beverages for potential adulteration as well.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
    • References:
      Cough syrup and codeine abuse | effects of lean and purple drank. https://americanaddictioncenters.org/ . Access on 15 April 2024.
      Philadelphia CBP officers intercept gallon of codeine syrup. U.S. customs and border protection.  https://www.cbp.gov/newsroom/local-media-release/philadelphia-cbp-officers-intercept-gallon-codeine-syrup . Accessed 15 Apr 2024.
      Talbott GA, Lynn AM, Levy FH, Zelikovic I (1997) respiratory arrest precipitated by codeine in a child with chronic renal failure. Clin Pediatr 36(3):171–173. https://doi.org/10.1177/000992289703600308. (PMID: 10.1177/000992289703600308)
      Barnett NW, Hindson BJ, Lewis SW, Purcell SD (1998) Determination of codeine, 6-methoxycodeine and thebaine using capillary electrophoresis with tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection. Anal Commun 35:321–324. https://doi.org/10.1039/A805955A. (PMID: 10.1039/A805955A)
      Kubiak EJ, Munson JW (1980) High-performance liquid chromatographic analysis of codeine in syrups using ion-pair formation. J Pharm Sci 69(2):152–156. https://doi.org/10.1002/jps.2600690209. (PMID: 10.1002/jps.26006902097359314)
      Cárdenas S, Gallego M, Valcárcel M (1997) An automated preparation device for the determination of drugs in biological fluids coupled on-line to a gas chromatograph/mass spectrometer. Rapid Commun Mass Spectrom 11(9):973–980. https://doi.org/10.1002/(SICI)1097-0231(19970615)11:9%3c973::AID-RCM875%3e3.0.CO;2-7. (PMID: 10.1002/(SICI)1097-0231(19970615)11:9<973::AID-RCM875>3.0.CO;2-7)
      Budd RD, Mathis DF, Leung WJ (1980) Screening and confirmation of opiates by thin-layer chromatography. Clin Toxicol 16(1):61–66. https://doi.org/10.3109/15563658008989925. (PMID: 10.3109/155636580089899257389282)
      Pratiwi R, Noviana E, Fauziati R, Carrão DB, Gandhi FA, Majid MA, Saputri FA (2021) A review of analytical methods for codeine determination. Molecules 26(4):800. https://doi.org/10.3390/molecules26040800. (PMID: 10.3390/molecules26040800335571687913935)
      Shih Y, Zen J-M, Yang H-H (2002) Determination of codeine in urine and drug formulations using a clay-modified screen-printed carbon electrode. J Pharm Biomed Anal 29:827–833. https://doi.org/10.1016/S0731-7085(02)00179-6. (PMID: 10.1016/S0731-7085(02)00179-612093515)
      Švorc L, Sochr J, Svítková J, Rievaj M, Bustin D (2013) Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron-doped diamond film electrode. Electrochim Acta 87:503–510. https://doi.org/10.1016/j.electacta.2012.09.111. (PMID: 10.1016/j.electacta.2012.09.111)
      Muñoz RAA (2023) Sustainable and economical platforms for electrochemical (bio) chemical sensing based on micro- and nanotechnologies. Microchim Acta 190:486. https://doi.org/10.1007/s00604-023-06058-6. (PMID: 10.1007/s00604-023-06058-6)
      González-Hernández J, Moya-Alvarado G, Alvarado-Gámez AL et al (2022) Electrochemical biosensor for quantitative determination of fentanyl based on immobilized cytochrome C on multi-walled carbon nanotubes modified screen-printed carbon electrodes. Microchim Acta 189:483. https://doi.org/10.1007/s00604-022-05578-x. (PMID: 10.1007/s00604-022-05578-x)
      Martin A, Hernández-Ferrer J, Vazquez L, Martínez M, Escarpa A (2014) Controlled chemistry of tailored graphene nanoribbons for electrochemistry: a rational approach to optimize molecule detection. RSC Adv 4:132–239. https://doi.org/10.1039/C3RA44235G. (PMID: 10.1039/C3RA44235G)
      Hasanpour F, Taei M, Tahmasebi S (2018) Ultra-sensitive electrochemical sensing of acetaminophen and codeine in biological fluids using CuO/CuFe2O4 nanoparticles as a novel electrocatalyst. J Food Drug Anal 26(2):879–886. https://doi.org/10.1016/j.jfda.2017.10.001. (PMID: 10.1016/j.jfda.2017.10.00129567260)
      Villarreal CC, Pham T, Ramnani P, Mulchandani A (2017) Carbon allotropes as sensors for environmental monitoring. Curr Opin Electrochem 3(1):106–113. https://doi.org/10.1016/j.coelec.2017.07.004. (PMID: 10.1016/j.coelec.2017.07.004)
      Cayuela A, Soriano ML, Carrillo-Carrión C, Valcárcel M (2016) Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem Commun 52:1311. https://doi.org/10.1039/C5CC07754K. (PMID: 10.1039/C5CC07754K)
      Bartolomé M, Soriano ML, Villaseñor MJ, Ríos Á (2023) γ-Cyclodextrin-graphene quantum dots-chitosan modified screen-printed electrode for sensing of fluoroquinolones. Microchim Acta 190:60. https://doi.org/10.1007/s00604-023-05646-w. (PMID: 10.1007/s00604-023-05646-w)
      Montes C, Soriano ML, Villaseñor MJ, Ríos Á (2020) Carbon-based nanodots as effective electrochemical sensing tools toward the simultaneous detection of bioactive compounds in complex matrices. J Electroanal Chem 878:114573. https://doi.org/10.1016/j.jelechem.2020.114573. (PMID: 10.1016/j.jelechem.2020.114573)
      Yu Q, Yang X, Chen Y (2016) Electrochemical detection of codeine in pharmaceutical tablets using a tungsten oxide nanoparticles and carbon nanotubes modified electrode. Int J Electrochem Sci 11:6862–6872. https://doi.org/10.20964/2016.08.13. (PMID: 10.20964/2016.08.13)
      Li Y, Li K, Song G, Liu J, Zhang K, Ye B (2013) Electrochemical behavior of codeine and its sensitive determination on graphene-based modified electrode. Sens Actuators B Chem 182:401–407. https://doi.org/10.1016/j.snb.2013.03.023. (PMID: 10.1016/j.snb.2013.03.023)
      Wester N, Mynttinen E, Etula J, Lilius T, Kalso E, Kauppinen EI, Laurila T, Koskinen J (2019) Simultaneous detection of morphine and codeine in the presence of ascorbic acid and uric acid and in human plasma at nafion single-walled carbon nanotube thin-film electrode. ACS Omega 4(18):17726–17734. https://doi.org/10.1021/acsomega.9b02147. (PMID: 10.1021/acsomega.9b02147316818786822113)
      Feizbakhsh R, Ebrahimi M, Davoodnia A (2016) Simultaneous DPV determination of morphine and codeine using dsDNA modified screen printed electrode strips coupled with electromembrane extraction. Int J Med Res Health Sci 5(1):206–218.
      Cayuela A, Soriano ML, Valcárcel M (2015) Photoluminescent carbon dots as sensors for carboxylated multiwalled carbon nanotube detection in river water. Sens Actuators B, Chem 207:596–601. https://doi.org/10.1016/j.snb.2014.10.102. (PMID: 10.1016/j.snb.2014.10.102)
      Cayuela A, Soriano ML, Valcárcel M (2013) Strong luminescence of CDs induced by acetone passivation: efficient sensor for a rapid analysis of two different pollutants. Anal Chim Acta 804:246–251. https://doi.org/10.1016/j.aca.2013.10.031. (PMID: 10.1016/j.aca.2013.10.03124267089)
      Pinilla-Peñalver E, Soriano ML, Durán GM, Llorent-Martínez EJ, Contento AM, Ríos A (2020) Discrimination between nanocurcumin and free curcumin using graphene quantum dots as a selective fluorescence probe. Microchim Acta 187:446. https://doi.org/10.1007/s00604-020-04437-x. (PMID: 10.1007/s00604-020-04437-x)
      Rodríguez-Gómez R, Roldán-Pijuán M, Lucena R, Cárdenas A, Zafra-Gómez A, Ballesteros O, Navalón A, Valcárcel M (2014) Stir-membrane solid-liquid-liquid microextraction for the determination of parabens in human breast milk samples by ultra high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1354:26–33. https://doi.org/10.1016/j.chroma.2014.05.071. (PMID: 10.1016/j.chroma.2014.05.07124935266)
      Mashadizadeh MH, Abdollahi G, Yousefi T (2016) SmHCF/multiwalled carbon nanotube modified glassy carbon electrode for the determination of codeine. J Electroanal Chem 780:68–74. https://doi.org/10.1016/j.jelechem.2016.09.001. (PMID: 10.1016/j.jelechem.2016.09.001)
      Ensafi AA, Ahmadi N, Rezaei B, Abarghoui MM (2015) A new electrochemical sensor for the simultaneous determination of acetaminophen and codeine based on porous silicon/palladium nanostructure. Talanta 134:745–753. https://doi.org/10.1016/j.talanta.2014.12.028. (PMID: 10.1016/j.talanta.2014.12.02825618731)
      Pirasteh M, Momeni T, Pourghobadi Z (2022) Electrochemical codeine sensor based on carbon paste electrode/HKUST-1. Mater Res Exp 9. https://doi.org/10.1088/2053-1591/ac9457.
      Taei M, Hasanpour F, Hajhashemi V, Movahedi M, Baghlani H (2016) Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2–Zn2SnO4 nanocomposites paste electrode. Appl Surf Sci 363:490–498. https://doi.org/10.1016/j.apsusc.2015.12.074. (PMID: 10.1016/j.apsusc.2015.12.074)
      Piech R, Rumin M, Paczosa B (2015) Voltammetric determination of codeine on glassy carbon electrode modified with nafion/MWCNTs. J Anal Methods Chem 2015:626458. https://doi.org/10.1155/2015/626458. (PMID: 10.1155/2015/626458257414514337050)
      Habibi B, Abazari M, Pournaghi-Azar MH (2014) Simultaneous determination of codeine and caffeine using single-walled carbon nanotubes modified carbon-ceramic electrode. Colloid Surf B 114:89–95. https://doi.org/10.1016/j.colsurfb.2013.09.026. (PMID: 10.1016/j.colsurfb.2013.09.026)
    • Grant Information:
      PID2020-112862RB-I00 Ministerio de Ciencia e Innovación; PID2020-112862RB-I00 Ministerio de Ciencia e Innovación; PID2020-112862RB-I00 Ministerio de Ciencia e Innovación; SBPLY/17/180501/000333 JJCC Castilla-La Mancha (FEDER)
    • Contributed Indexing:
      Keywords: Screen-printed electrode; Biofluids; Carbon nanoparticles; Differential pulse voltammetry; Electrochemical sensing; Graphene quantum dots; Opioids; Soft drinks
    • Accession Number:
      7782-42-5 (Graphite)
      UX6OWY2V7J (Codeine)
    • Publication Date:
      Date Created: 20241103 Date Completed: 20241103 Latest Revision: 20241103
    • Publication Date:
      20241104
    • Accession Number:
      10.1007/s00604-024-06787-2
    • Accession Number:
      39489812