Menu
×
John's Island Library
Closed
Phone: (843) 559-1945
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Today's Hours
John's Island Library
Closed
Phone: (843) 559-1945
Main Library
2 p.m. – 5 p.m.
Phone: (843) 805-6930
West Ashley Library
Closed
Phone: (843) 766-6635
Wando Mount Pleasant Library
Closed
Phone: (843) 805-6888
Village Library
Closed
Phone: (843) 884-9741
St. Paul's/Hollywood Library
Closed
Phone: (843) 889-3300
Otranto Road Library
Closed
Phone: (843) 572-4094
Mt. Pleasant Library
Closed
Phone: (843) 849-6161
McClellanville Library
Closed
Phone: (843) 887-3699
Keith Summey North Charleston Library
Closed
Phone: (843) 744-2489
Hurd/St. Andrews Library
Closed
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
Closed
Phone: (843) 869-2355
Dorchester Road Library
Closed
Phone: (843) 552-6466
John L. Dart Library
Closed
Phone: (843) 722-7550
Baxter-Patrick James Island
Closed
Phone: (843) 795-6679
Bees Ferry West Ashley Library
Closed
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
Closed
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
An Update on Recent Drug Delivery Systems Targeting Brain Diseases via the Transnasal Pathway.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Zeng H;Zeng H;Zeng H; Lu H; Lu H; Lu H; Yang J; Yang J; Yang J; Hu P; Hu P; Hu P
- Source:
Pharmaceutical research [Pharm Res] 2024 Nov; Vol. 41 (11), pp. 2121-2141. Date of Electronic Publication: 2024 Oct 30.- Publication Type:
Journal Article; Review- Language:
English - Source:
- Additional Information
- Source: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 8406521 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-904X (Electronic) Linking ISSN: 07248741 NLM ISO Abbreviation: Pharm Res Subsets: MEDLINE
- Publication Information: Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: Stuttgart ; New York : Thieme, c1984- - Subject Terms:
- Abstract: Objective: To explore the potential of transnasal drug delivery systems (DDS) as an effective means of bypassing the bloodbrain barrier (BBB) for enhanced central nervous system (CNS) targeting, aiming to improve therapeutic outcomes for CNS disorders while reducing systemic side effects.
Methods: A review of current and emerging DDS technologies, including polymer nanoparticles, liposomes, and micelles, was conducted to assess their suitability for precision-targeted delivery to the brain through the transnasal route.
Results: The investigated DDS demonstrate promising capabilities for CNS targeting via the nasal pathway, effectively preserving both the nasal mucosa and CNS integrity. These systems enhance drug precision within neural tissues, potentially improving therapeutic outcomes without harming adjacent tissues.
Conclusions: Transnasal DDS offer a promising alternative to traditional delivery methods, with significant potential to advance the treatment of cerebrovascular diseases, neurodegenerative disorders, brain tumors, and psychiatric conditions. This approach represents an evolving frontier in neurotherapeutics, with the potential to transform CNS drug delivery practices.
Competing Interests: Declarations. Competing Interest: The authors declare that they have no known competing financial interests or personal rela-tionships that could have appeared to influence the work reported in this paper.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.) - References: Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 2018;27(6):1176–99. https://doi.org/10.1016/j.cmet.2018.05.011 . (PMID: 10.1016/j.cmet.2018.05.011298745666039826)
Han L, Jiang C. Evolution of blood–brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies. Acta Pharmaceutica Sinica B. 2021;11(8):2306–25. https://doi.org/10.1016/j.apsb.2020.11.023 . (PMID: 10.1016/j.apsb.2020.11.02334522589)
Erdő F, et al. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–70. https://doi.org/10.1016/j.brainresbull.2018.10.009 . (PMID: 10.1016/j.brainresbull.2018.10.00930449731)
Abbott NJ, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25. https://doi.org/10.1016/j.nbd.2009.07.030 . (PMID: 10.1016/j.nbd.2009.07.03019664713)
Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94(1):1–14. https://doi.org/10.1111/j.1471-4159.2005.03168.x . (PMID: 10.1111/j.1471-4159.2005.03168.x15953344)
Neuwelt EA, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci. 2011;12(3):169–82. https://doi.org/10.1038/nrn2995 . (PMID: 10.1038/nrn2995213310833335275)
Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–50. https://doi.org/10.1038/nrneurol.2017.188 . (PMID: 10.1038/nrneurol.2017.188293770085829048)
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. https://doi.org/10.1038/nrn1824 . (PMID: 10.1038/nrn182416371949)
Gingrich MB, et al. Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci. 2000;20(12):4582–95. https://doi.org/10.1523/Jneurosci.20-12-04582.2000 . (PMID: 10.1523/Jneurosci.20-12-04582.2000108440286772448)
Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2:3–14. (PMID: 10.1602/neurorx.2.1.315717053539316)
Zhou Z, Sun T, Jiang C. Recent advances on drug delivery nanocarriers for cerebral disorders. Biomed Mater. 2021;16(2). https://doi.org/10.1088/1748-605X/abdc97 .
Sun B-L, et al. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog Neurobiol. 2018;163–164:118–43. https://doi.org/10.1016/j.pneurobio.2017.08.007 . (PMID: 10.1016/j.pneurobio.2017.08.00728903061)
Crowe TP, et al. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52. https://doi.org/10.1016/j.lfs.2017.12.025 . (PMID: 10.1016/j.lfs.2017.12.02529277310)
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28. https://doi.org/10.1016/j.addr.2011.11.002 . (PMID: 10.1016/j.addr.2011.11.00222119441)
Mygind N, Anggård A. Anatomy and Physiology of the Nose-Pathophysiologic Alterations in Allergic Rhinitis. Clin Rev Allergy. 1984;2:173–88. (PMID: 10.1007/BF029910986149007)
Niels Mygind RD. Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev. 1998;29:3–12. (PMID: 10.1016/S0169-409X(97)00058-6)
Watelet JB, Van Cauwenberge P. Applied anatomy and physiology of the nose and paranasal sinuses. Allergy. 1999;54:14–25. (PMID: 10.1111/j.1398-9995.1999.tb04402.x10565476)
Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018;10(3). https://doi.org/10.3390/pharmaceutics10030116 .
Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci. 2005;94(6):1187–95. https://doi.org/10.1002/jps.20318 . (PMID: 10.1002/jps.2031815858850)
Thorne RG, et al. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96. https://doi.org/10.1016/j.neuroscience.2004.05.029 . (PMID: 10.1016/j.neuroscience.2004.05.02915262337)
Schaefer ML, et al. Trigeminal collaterals in the nasal epithelium and olfactory bulb: A potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol. 2002;444(3):221–6. https://doi.org/10.1002/cne.10143 . (PMID: 10.1002/cne.1014311840476)
Gomez D, Martinez JA, Hanson LR, Frey WH II, Toth CC. Intranasal treatment of neurodegenerative diseases and stroke. Front Biosci. 2012;4:74–89. (PMID: 10.2741/s252)
Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci. 2015;112(40):12486–91. https://doi.org/10.1073/pnas.1517048112 . (PMID: 10.1073/pnas.1517048112263925634603510)
Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65. https://doi.org/10.1016/j.addr.2011.11.010 . (PMID: 10.1016/j.addr.2011.11.01022154620)
Hartl N, Adams F, Merkel OM. From adsorption to covalent bonding: Apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood–brain barrier. Adv Ther. 2020;4(1). https://doi.org/10.1002/adtp.202000092 .
Hultqvist G, et al. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics. 2017;7(2):308–18. https://doi.org/10.7150/thno.17155 . (PMID: 10.7150/thno.17155280423365197066)
Zhang W, et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS. 2020;17(1). https://doi.org/10.1186/s12987-020-00209-0 .
Nounou MI, et al. Anti-cancer Antibody Trastuzumab-Melanotransferrin Conjugate (BT2111) for the Treatment of Metastatic HER2+ Breast Cancer Tumors in the Brain: an In-Vivo Study. Pharm Res. 2016;33(12):2930–42. https://doi.org/10.1007/s11095-016-2015-0 . (PMID: 10.1007/s11095-016-2015-0275283925267937)
Zuchero YJY, et al. Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89(1):70–82. https://doi.org/10.1016/j.neuron.2015.11.024 . (PMID: 10.1016/j.neuron.2015.11.02426687840)
Misra A, et al. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6(2):252–73. (PMID: 12935438)
Wolfgang Löscher HP. Blood brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98. https://doi.org/10.1602/neurorx.2.1.86 . (PMID: 10.1602/neurorx.2.1.8615717060539326)
Borst P, Evers R, Kool M, Wijnholds J. The multidrug resistance protein family. Biophys Acta. 1999;1461(2):347–57. https://doi.org/10.1016/s0005-2736(99)00167-4 . (PMID: 10.1016/s0005-2736(99)00167-4)
Monte JC, et al. Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochem Biophys Res Commun. 2004;323(2):429–36. https://doi.org/10.1016/j.bbrc.2004.08.112 . (PMID: 10.1016/j.bbrc.2004.08.11215369770)
Deli MA, et al. Functional evidence of multidrug resistance transporters (MDR) in rodent olfactory epithelium. PLoS One. 2012;7(5). https://doi.org/10.1371/journal.pone.0036167 .
Graff CL, Pollack GM. P-glycoprotein attenuates brain uptake of substrates after nasal instillation. Pharm Res. 2003;20(8):1225–30. https://doi.org/10.1023/A:1025053115583 . (PMID: 10.1023/A:102505311558312948020)
Kudo H, Doi Y, Fujimoto S. Expressions of the multidrug resistance-related proteins in the rat olfactory epithelium: A possible role in the phase III xenobiotic metabolizing function. Neurosci Lett. 2010;468(2):98–101. https://doi.org/10.1016/j.neulet.2009.10.073 . (PMID: 10.1016/j.neulet.2009.10.07319879335)
Oliveira P, et al. Drug-metabolizing enzymes and efflux transporters in nasal epithelium: influence on the bioavailability of intranasally administered drugs. Curr Drug Metab. 2016;17(7):628–47. https://doi.org/10.2174/1389200217666160406120509 . (PMID: 10.2174/138920021766616040612050927048181)
Ugwoke MI, Verbeke N, Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J Pharm Pharmacol. 2001;53(1):3–21. https://doi.org/10.1211/0022357011775145 . (PMID: 10.1211/002235701177514511206189)
Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73. https://doi.org/10.1002/jps.21924 . (PMID: 10.1002/jps.2192419877171)
Charlton ST, et al. Evaluation of direct transport pathways of glycine receptor antagonists and an angiotensin antagonist from the nasal cavity to the central nervous system in the rat model. Pharm Res. 2008;25(7):1531–43. https://doi.org/10.1007/s11095-008-9550-2 . (PMID: 10.1007/s11095-008-9550-218293062)
Nonaka N, et al. Delivery of galanin-like peptide to the brain: targeting with intranasal delivery and cyclodextrins. J Pharmacol Exp Ther. 2008;325(2):513–9. https://doi.org/10.1124/jpet.107.132381 . (PMID: 10.1124/jpet.107.13238118270319)
Banks WA, During MJ, Niehoff ML. Brain uptake of the Glucagon-Like Peptide-1 Antagonist Exendin(9–39) after intranasal administration. J Pharmacol Exp Ther. 2004;309(2):469–75. https://doi.org/10.1124/jpet.103.063222 . (PMID: 10.1124/jpet.103.06322214724226)
Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1):146–57. https://doi.org/10.1016/j.ijpharm.2009.06.019 . (PMID: 10.1016/j.ijpharm.2009.06.01919555750)
Feng C, et al. Enhancement of nose-to-brain delivery of basic fibroblast growth factor for improving rat memory impairments induced by co-injection of β-amyloid and ibotenic acid into the bilateral hippocampus. Int J Pharm. 2012;423(2):226–34. https://doi.org/10.1016/j.ijpharm.2011.12.008 . (PMID: 10.1016/j.ijpharm.2011.12.00822193058)
Kim TW, Chung H, Kwon IC, Sung HC, Jeong SY. In vivo gene transfer to the mouse nasal cavity mucosa using a stable cationic lipid emulsion. Mol Cells. 1999;10:142–7. (PMID: 10.1007/s10059-000-0142-1)
Hanafy AS, Farid RM, ElGamal SS. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer’s disease management: preparation and detection in rat brain. Drug Dev Ind Pharm. 2015;41(12):2055–68. https://doi.org/10.3109/03639045.2015.1062897 . (PMID: 10.3109/03639045.2015.106289726133084)
Ahmad N, et al. RETRACTED ARTICLE: Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif Cells Nanomed Biotechnol. 2017;46(4):717–29. https://doi.org/10.1080/21691401.2017.1337024 . (PMID: 10.1080/21691401.2017.133702428604104)
Li X, et al. Nasal delivery of analgesic ketorolac tromethamine thermo- and ion-sensitive in situ hydrogels. Int J Pharm. 2015;489(1–2):252–60. https://doi.org/10.1016/j.ijpharm.2015.05.009 . (PMID: 10.1016/j.ijpharm.2015.05.00925957699)
Zhang Y, et al. Mitochondrial-targeted and ROS-responsive nanocarrier nose-to-brain pathway for ischemic stroke treatment. Acta Pharmaceutica Sinica B. 2023;13(12):5107–20. https://doi.org/10.1016/j.apsb.2023.06.011 . (PMID: 10.1016/j.apsb.2023.06.0113804506410692350)
Li R, et al. Targeted delivery of intranasally administered nanoparticles-mediated neuroprotective peptide NR2B9c to brain and neuron for treatment of ischemic stroke. Nanomedicine. 2019;18:380–90. https://doi.org/10.1016/j.nano.2018.10.013 . (PMID: 10.1016/j.nano.2018.10.01330428334)
Zhou X, et al. Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy. J Control Release. 2023;357:1–19. https://doi.org/10.1016/j.jconrel.2023.03.033 . (PMID: 10.1016/j.jconrel.2023.03.03336958402)
Wang Y, et al. Anti-CHAC1 exosomes for nose-to-brain delivery of miR-760–3p in cerebral ischemia/reperfusion injury mice inhibiting neuron ferroptosis. J Nanobiotechnol. 2023;21(1). ARTN 109. https://doi.org/10.1186/s12951-023-01862-x .
Yu S, et al. Multidrug-loaded liposomes prevent ischemic stroke through intranasal administration. Biomed Pharmacother. 2023;162. ARTN 114542. https://doi.org/10.1016/j.biopha.2023.114542 .
Huang C, et al. Preparation, in vitro and in vivo evaluation of nanoemulsion in situ gel for transnasal delivery of traditional Chinese medicine volatile oil from Ligusticum sinense Oliv.cv. Chaxiong. Molecules. 2022;27(21). https://doi.org/10.3390/molecules27217644 .
Yang X, et al. Intranasal delivery of BACE1 siRNA and Rapamycin by dual targets modified nanoparticles for Alzheimer's disease therapy. Small. 2022;18(30). https://doi.org/10.1002/smll.202203182 .
Dou Y, et al. Natural phyto-antioxidant albumin nanoagents to treat advanced Alzheimer’s disease. ACS Appl Mater Interfaces. 2021;13(26):30373–82. https://doi.org/10.1021/acsami.1c07281 . (PMID: 10.1021/acsami.1c0728134180234)
Musumeci T, et al. Intranasal administration of a TRAIL neutralizing monoclonal antibody adsorbed in PLGA nanoparticles and NLC nanosystems: an in vivo study on a mouse model of Alzheimer’s disease. Biomedicines. 2022;10(5). https://doi.org/10.3390/biomedicines10050985 .
Jia Z, et al. Multifunctional supramolecular vesicles as Zn2+‐Triggered microglial modulator alleviates Alzheimer's Disease. Small. 2023;19(36). https://doi.org/10.1002/smll.202302176 .
Fonseca-Santos B, et al. Intranasal in situ gelling liquid crystal for delivery of resveratrol ameliorates memory and neuroinflammation in Alzheimer's disease. Nanomedicine. 2023;51. https://doi.org/10.1016/j.nano.2023.102689 .
Shen X, et al. Exploring the potential to enhance drug distribution in the brain subregion via intranasal delivery of nanoemulsion in combination with borneol as a guider. Asian J Pharm Sci. 2023;18(6):ARTN 100778. https://doi.org/10.1016/j.ajps.2023.100778 . (PMID: 10.1016/j.ajps.2023.100778)
Ma X, et al. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer’s disease. J Control Release. 2020;327:688–702. https://doi.org/10.1016/j.jconrel.2020.09.019 . (PMID: 10.1016/j.jconrel.2020.09.01932931898)
Peng H, et al. Intranasal administration of self-oriented nanocarriers based on therapeutic exosomes for synergistic treatment of Parkinson’s disease. ACS Nano. 2022;16(1):869–84. https://doi.org/10.1021/acsnano.1c08473 . (PMID: 10.1021/acsnano.1c0847334985280)
Zhao D, et al. Carrier-free quercetin nanomedicine blocks NLRP3 deubiquitination and TXNIP recruitment for Parkinson’s disease therapy. Chem Eng J. 2023;464. https://doi.org/10.1016/j.cej.2023.142697 .
Sridhar V, et al. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine. 2018;14(8):2609–18. https://doi.org/10.1016/j.nano.2018.08.004 . (PMID: 10.1016/j.nano.2018.08.00430171904)
Tan Y, et al. Rational design of thermosensitive hydrogel to deliver nanocrystals with intranasal administration for brain targeting in Parkinson’s disease. Research. 2021;2021. https://doi.org/10.34133/2021/9812523 .
Upadhaya P, et al. Nose to brain delivery of radiolabeled chemotherapeutic micelles: Meeting the unmet needs of brain tumors. J Drug Deliv Sci Technol. 2023;86:ARTN 104700. https://doi.org/10.1016/j.jddst.2023.104700 . (PMID: 10.1016/j.jddst.2023.104700)
Yang Y, et al. Enhanced nose-to-brain delivery of siRNA using hyaluronan-enveloped nanomicelles for glioma therapy. J Control Release. 2022;342:66–80. https://doi.org/10.1016/j.jconrel.2021.12.034 . (PMID: 10.1016/j.jconrel.2021.12.03434973309)
Lee Y, et al. Antisense-oligonucleotide co-micelles with tumor targeting peptides elicit therapeutic effects by inhibiting microRNA-21 in the glioblastoma animal models. J Adv Res. 2023;53:249–60. https://doi.org/10.1016/j.jare.2023.01.005 . (PMID: 10.1016/j.jare.2023.01.0053663288710658310)
Azambuja JH, et al. Nasal administration of cationic nanoemulsions as CD73-siRNA delivery system for glioblastoma treatment: a new therapeutical approach. Mol Neurobiol. 2019;57(2):635–49. https://doi.org/10.1007/s12035-019-01730-6 . (PMID: 10.1007/s12035-019-01730-631407144)
Michels LR, et al. Nasal administration of a temozolomide-loaded thermoresponsive nanoemulsion reduces tumor growth in a preclinical glioblastoma model. J Control Release. 2023;355:343–57. https://doi.org/10.1016/j.jconrel.2023.01.070 . (PMID: 10.1016/j.jconrel.2023.01.07036731799)
Sandbhor P, et al. Targeted nano-delivery of chemotherapy via intranasal route suppresses in vivo glioblastoma growth and prolongs survival in the intracranial mouse model. Drug Deliv Transl Res. 2022;13(2):608–26. https://doi.org/10.1007/s13346-022-01220-8 . (PMID: 10.1007/s13346-022-01220-836245060)
Pund S, Rasve G, Borade G. Ex vivo permeation characteristics of venlafaxine through sheep nasal mucosa. Eur J Pharm Sci. 2013;48(1–2):195–201. https://doi.org/10.1016/j.ejps.2012.10.029 . (PMID: 10.1016/j.ejps.2012.10.02923159662)
Singh D, et al. Pharmacological evaluation of nasal delivery of selegiline hydrochloride-loaded thiolated chitosan nanoparticles for the treatment of depression. Artif Cells Nanomed Biotechnol. 2015;1-13. https://doi.org/10.3109/21691401.2014.998824 .
Xu D, et al. Intranasal delivery of icariin via a nanogel-thermoresponsive hydrogel compound system to improve its antidepressant-like activity. Int J Pharm. 2020;586. https://doi.org/10.1016/j.ijpharm.2020.119550 .
Elkomy MH, et al. Intranasal nanotransferosomal gel for Quercetin brain targeting: II. Antidepressant effect in an experimental animal model. Pharmaceutics. 2023;15(8):ARTN 2095. https://doi.org/10.3390/pharmaceutics15082095 . (PMID: 10.3390/pharmaceutics15082095)
Qizilbash FF, et al. Thymoquinone-enriched naringenin-loaded nanostructured lipid carrier for brain delivery via nasal route: in vitro prospect and in vivo therapeutic efficacy for the treatment of depression. Pharmaceutics. 2022;14(3). https://doi.org/10.3390/pharmaceutics14030656 .
Minhas JS, Robinson TG. Latest developments in clinical stroke care. J R Coll Physicians Edinb. 2017;47(4):360–3. https://doi.org/10.4997/jrcpe.2017.413 . (PMID: 10.4997/jrcpe.2017.41329537410)
Grysiewicz RA, Thomas K, Pandey DK. Epidemiology of ischemic and hemorrhagic stroke: incidence, prevalence, mortality, and risk factors. Neurol Clin. 2008;26(4):871–95. https://doi.org/10.1016/j.ncl.2008.07.003 . (PMID: 10.1016/j.ncl.2008.07.00319026895)
Campbell BCV, Khatri P. Stroke. Lancet. 2020;396(10244):129–42. https://doi.org/10.1016/s0140-6736(20)31179-x . (PMID: 10.1016/s0140-6736(20)31179-x32653056)
Virani SS, et al. Heart disease and stroke statistics—2020 Update: A report from the American Heart Association. Circulation. 2020;141(9). https://doi.org/10.1161/cir.0000000000000757 .
Chen L, et al. Value of Barthel, PLAN and NIHSS scores for predicting the death of patients with acute ischemic stroke during their 5-year follow-up. J Clin Neurosci. 2021;90:94–8. https://doi.org/10.1016/j.jocn.2021.05.049 . (PMID: 10.1016/j.jocn.2021.05.04934275588)
Li D, et al. Butyrate alleviates PTZ-induced mitochondrial dysfunction, oxidative stress and neuron apoptosis in mice via Keap1/Nrf2/HO-1 pathway. Brain Res Bull. 2021;168:25–35. https://doi.org/10.1016/j.brainresbull.2020.12.009 . (PMID: 10.1016/j.brainresbull.2020.12.00933359640)
Ma K, et al. Toll-Like Receptor 2–Mediated autophagy promotes microglial cell death by modulating the microglial M1/M2 phenotype. Inflammation. 2019;43(2):701–11. https://doi.org/10.1007/s10753-019-01152-5 . (PMID: 10.1007/s10753-019-01152-5)
Ranjbar Taklimie F, et al. Hypoxia induces astrocyte-derived Lipocalin-2 in ischemic stroke. Int J Mol Sci. 2019;20(6). https://doi.org/10.3390/ijms20061271 .
Barfejani AH, et al. Donepezil in the treatment of ischemic stroke: Review and future perspective. Life Sci. 2020;263. https://doi.org/10.1016/j.lfs.2020.118575 .
Xu J, et al. Edaravone dexborneol versus edaravone alone for the treatment of acute ischemic stroke. Stroke. 2021;52(3):772–80. https://doi.org/10.1161/strokeaha.120.031197 . (PMID: 10.1161/strokeaha.120.03119733588596)
Zhang X, et al. Clinical characteristics and prognostic analysis of anti-gamma-aminobutyric acid-B (GABA-B) receptor encephalitis in Northeast China. BMC Neurol. 2020;20(1). https://doi.org/10.1186/s12883-019-1585-y .
Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2017;18(4):225–42. https://doi.org/10.1038/nri.2017.125 . (PMID: 10.1038/nri.2017.12529151590)
Kim JY, Bae H-J. Spontaneous intracerebral hemorrhage: Management. J Stroke. 2017;19(1):28–39. https://doi.org/10.5853/jos.2016.01935 . (PMID: 10.5853/jos.2016.0193528178413)
Reddy PH, Oliver DMA. Amyloid beta and phosphorylated Tau-Induced defective autophagy and mitophagy in Alzheimer’s Disease. Cells. 2019;8(5). https://doi.org/10.3390/cells8050488 .
Kawai K, Hayakawa K, Suzuki T. Simulation of 20-year Deterioration of Acrylic IOLs Using Severe Accelerated Deterioration Tests. Tokai J Exp Clin Med. 2012;37:62–5. (PMID: 23032245)
Bob-Manuel T, et al. A review of racial disparities in transcatheter aortic valve replacement (TAVR): accessibility, referrals and implantation. Ann Transl Med. 2018;6(1):10–10. https://doi.org/10.21037/atm.2017.10.17 . (PMID: 10.21037/atm.2017.10.17294043565787726)
Wischik CM, Novak M, Thøgersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA. 1988;85:4506–10. (PMID: 10.1073/pnas.85.12.45063132715280459)
Selkoe DJ. Toward a comprehensive theory for Alzheimer’s disease - Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Alzheimers Disease: A Compendium of Current Theories. Ann N Y Acad Sci. 2000;924:17–25. (PMID: 10.1111/j.1749-6632.2000.tb05554.x11193794)
van Dyck CH. Anti-Amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiat. 2018;83(4):311–9. https://doi.org/10.1016/j.biopsych.2017.08.010 . (PMID: 10.1016/j.biopsych.2017.08.01028967385)
Ossenkoppele R, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139(5):1551–67. https://doi.org/10.1093/brain/aww027 . (PMID: 10.1093/brain/aww027269620525006248)
Spatola M, Wider C. Genetics of Parkinson’s disease: the yield. Parkinsonism Relat Disord. 2014;20:S35–8. https://doi.org/10.1016/s1353-8020(13)70011-7 . (PMID: 10.1016/s1353-8020(13)70011-724262184)
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci. 2020;21(2):103–15. https://doi.org/10.1038/s41583-019-0257-7 . (PMID: 10.1038/s41583-019-0257-731907406)
Harris MK, et al. Movement disorders. Med Clin North Am. 2009;93(2):371–88. https://doi.org/10.1016/j.mcna.2008.09.002 . (PMID: 10.1016/j.mcna.2008.09.00219272514)
Nikam S, Nikam P, Ahaley SK, Sontakke AV. Oxidative stress in Parkinson’s disease. Indian J Clin Biochem. 2009;25(1):98–101. (PMID: 10.1007/s12291-009-0017-y)
Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016;139:216–31. https://doi.org/10.1111/jnc.13731 . (PMID: 10.1111/jnc.1373127546335)
He Q, et al. Downregulation of miR-7116-5p in microglia by MPP+sensitizes TNF-α production to induce dopaminergic neuron damage. Glia. 2017;65(8):1251–63. https://doi.org/10.1002/glia.23153 . (PMID: 10.1002/glia.2315328543680)
Sun H, et al. Aquaporin-4 mediates communication between astrocyte and microglia: Implications of neuroinflammation in experimental Parkinson’s disease. Neuroscience. 2016;317:65–75. https://doi.org/10.1016/j.neuroscience.2016.01.003 . (PMID: 10.1016/j.neuroscience.2016.01.00326774050)
Melki R. Role of different alpha-synuclein strains in synucleinopathies, similarities with other neurodegenerative diseases. J Parkinsons Dis. 2015;5(2):217–27. https://doi.org/10.3233/jpd-150543 . (PMID: 10.3233/jpd-150543257578304923763)
Sonntag K-C, et al. Pluripotent stem cell-based therapy for Parkinson’s disease: Current status and future prospects. Prog Neurobiol. 2018;168:1–20. https://doi.org/10.1016/j.pneurobio.2018.04.005 . (PMID: 10.1016/j.pneurobio.2018.04.005296532506077089)
Ellis HP, et al. Current challenges in glioblastoma: intratumour heterogeneity, residual disease, and models to predict disease recurrence. Front Oncol. 2015;5. https://doi.org/10.3389/fonc.2015.00251 .
Lima FRS, et al. Glioblastoma: Therapeutic challenges, what lies ahead. Biochim Biophys Acta (BBA) Rev Cancer. 2012;1826(2):338–49. https://doi.org/10.1016/j.bbcan.2012.05.004 . (PMID: 10.1016/j.bbcan.2012.05.004)
Ashfaq UA, Riaz M, Yousaf Z, Yasmeen E. Recent advances in nanoparticlebased targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst. 2017;34(3):317–53. (PMID: 10.1615/CritRevTherDrugCarrierSyst.201701784529199588)
Sgroi DC, et al. Assessment of the prognostic and predictive utility of the Breast Cancer Index (BCI): an NCIC CTG MA.14 study. Breast Cancer Res. 2016;18(1). https://doi.org/10.1186/s13058-015-0660-6 .
Ningaraj NS, Sankpal UT, Khaitan D, Meister EA, Vats TS. Modulation of KCa 1 channels increases anticancer drug delivery to brain tumors and prolongs survival in xenograft model. Cancer Biol Ther. 2009;8(20):1924–33. (PMID: 10.4161/cbt.8.20.949019738431)
Bhatia P, et al. Breast cancer resistance protein (BCRP/ABCG2) localises to the nucleus in glioblastoma multiforme cells. Xenobiotica. 2012;42(8):748–55. https://doi.org/10.3109/00498254.2012.662726 . (PMID: 10.3109/00498254.2012.662726224013483374059)
Liu W-J, et al. Natural borneol is a novel chemosensitizer that enhances temozolomide-induced anticancer efficiency against human glioma by triggering mitochondrial dysfunction and reactive oxide species-mediated oxidative damage. Onco Targets Ther. 2018;11:5429–39. https://doi.org/10.2147/ott.S174498 . (PMID: 10.2147/ott.S174498302332046129032)
Liu Q, et al. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J Psychiatr Res. 2020;126:134–40. https://doi.org/10.1016/j.jpsychires.2019.08.002 . (PMID: 10.1016/j.jpsychires.2019.08.00231439359)
Silvestro S, Bramanti P, Mazzon E. Role of Quercetin in Depressive-Like Behaviors: Findings from Animal Models. Appl Sci. 2021;11(15). https://doi.org/10.3390/app11157116 .
Elkomy MH, et al. Intranasal nanotransferosomal gel for quercetin brain targeting: I. Optimization, characterization, brain localization, and cytotoxic studies. Pharmaceutics. 2023;15(7). https://doi.org/10.3390/pharmaceutics15071805 .
Wang Q-S, et al. Intranasal delivery of berberine via in situ thermoresponsive hydrogels with non-invasive therapy exhibits better antidepressant-like effects. Biomater Sci. 2020;8(10):2853–65. https://doi.org/10.1039/c9bm02006c . (PMID: 10.1039/c9bm02006c32270794) - Grant Information: 82071367 the National Natural Science Foundation of China; 2021A1515220047 Natural Science Foundation of Guangdong Province of China; 2023A1515011135 Natural Science Foundation of Guangdong Province of China; 20221102 Project of Administration of Traditional Chinese Medicine of Guangdong Province of China
- Contributed Indexing: Keywords: advanced materials; biomedical applications; brain diseases; transnasal drug delivery
- Accession Number: 0 (Liposomes)
0 (Micelles)
0 (Polymers) - Publication Date: Date Created: 20241031 Date Completed: 20241126 Latest Revision: 20241204
- Publication Date: 20241204
- Accession Number: 10.1007/s11095-024-03790-3
- Accession Number: 39477900
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.