Bispecific Antibodies, Immune Checkpoint Inhibitors, and Antibody-Drug Conjugates Directing Antitumor Immune Responses: Challenges and Prospects.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Li CL;Li CL; Ma XY; Ma XY; Yi P; Yi P
  • Source:
    Cell biochemistry and function [Cell Biochem Funct] 2024 Dec; Vol. 42 (8), pp. e70011.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 8305874 Publication Model: Print Cited Medium: Internet ISSN: 1099-0844 (Electronic) Linking ISSN: 02636484 NLM ISO Abbreviation: Cell Biochem Funct Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford, England : Wiley-Blackwell
      Original Publication: Guildford, Surrey : Butterworth Scientific Ltd., c1983-
    • Subject Terms:
    • Abstract:
      Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD-1, PD-L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD-1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD-L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody-drug conjugates (ADCs). The development of truly effective therapies for patients with treatment-resistant cancers can be achieved by optimizing the various components of ADCs.
      (© 2024 John Wiley & Sons Ltd.)
    • References:
      M. Selby, J. Engelhardt, L.‐S. Lu, et al., “Antitumor Activity of Concurrent Blockade of Immune Checkpoint Molecules CTLA‐4 and PD‐1 in Preclinical Models,” American Society of Clinical Oncology (2013).
      S.‐R. Woo, M. E. Turnis, M. V. Goldberg, et al., “Immune Inhibitory Molecules LAG‐3 and PD‐1 Synergistically Regulate T‐Cell Function to Promote Tumoral Immune Escape,” Cancer Research 72, no. 4 (2012): 917–927.
      J. Yeo, M. Ko, D.‐H. Lee, Y. Park, and H. Jin, “TIGIT/CD226 Axis Regulates Anti‐Tumor Immunity,” Pharmaceuticals 14, no. 3 (2021): 200.
      Y. Tabana, T. C. Moon, A. Siraki, S. Elahi, and K. Barakat, “Reversing T‐Cell Exhaustion in Immunotherapy: A Review on Current Approaches and Limitations,” Expert Opinion on Therapeutic Targets 25, no. 5 (2021): 347–363.
      N. Budimir, G. D. Thomas, J. S. Dolina, and S. Salek‐Ardakani, “Reversing T‐Cell Exhaustion in Cancer: Lessons Learned From PD‐1/PD‐L1 Immune Checkpoint Blockade,” Cancer Immunology Research 10, no. 2 (2022): 146–153.
      M. Datta, L. M. Coussens, H. Nishikawa, F. S. Hodi, and R. K. Jain, eds., Reprogramming the Tumor Microenvironment to Improve Immunotherapy: Emerging Strategies and Combination Therapies (American Society of Clinical Oncology Educational Book, 2019).
      R. Barnestein, L. Galland, L. Kalfeist, F. Ghiringhelli, S. Ladoire, and E. Limagne, “Immunosuppressive Tumor Microenvironment Modulation by Chemotherapies and Targeted Therapies to Enhance Immunotherapy Effectiveness,” Oncoimmunology 11, no. 1 (2022): 2120676.
      N. Gera, “The Evolution of Bispecific Antibodies,” Expert Opinion on Biological Therapy 22, no. 8 (2022): 945–949.
      J. Ma, Y. Mo, M. Tang, et al., “Bispecific Antibodies: From Research to Clinical Application,” Frontiers in Immunology 12 (2021): 626616.
      J. Golay and A. E. Andrea, “Combined Anti‐Cancer Strategies Based on Anti‐Checkpoint Inhibitor Antibodies,” Antibodies 9, no. 2 (2020): 17.
      A. Beishenaliev, Y. L. Loke, S. J. Goh, et al., “Bispecific Antibodies for Targeted Delivery of Anti‐Cancer Therapeutic Agents: A Review,” Journal of Controlled Release 359 (2023): 268–286.
      Y. Hong, S.‐M. Nam, and A. Moon, “Antibody–Drug Conjugates and Bispecific Antibodies Targeting Cancers: Applications of Click Chemistry,” Archives of Pharmacal Research 46, no. 3 (2023): 131–148.
      K. Liu, M. Li, Y. Li, et al., “A Review of the Clinical Efficacy of FDA‐Approved Antibody‒Drug Conjugates in Human Cancers,” Molecular Cancer 23, no. 1 (2024): 62.
      B. Sharkey, S. Pudi, I. Wallace Moyer, et al., “Purification of Common Light Chain IgG‐Like Bispecific Antibodies Using Highly Linear pH Gradients,” MAbs 9, no. 2 (2017): 257–268, https://doi.org/10.1080/19420862.2016.1267090.
      G. You, J. Won, Y. Lee, et al., “Bispecific Antibodies: A Smart Arsenal for Cancer Immunotherapies,” Vaccines 9, no. 7 (2021): 724.
      B. Blanco, Á. Ramírez‐Fernández, and L. Alvarez‐Vallina, “Engineering Immune Cells for In Vivo Secretion of Tumor‐Specific T Cell‐Redirecting Bispecific Antibodies,” Frontiers in Immunology 11 (2020): 563107.
      S. Lutz, K. Klausz, A.‐M. Albici, et al., “Novel NKG2D‐Directed Bispecific Antibodies Enhance Antibody‐Mediated Killing of Malignant B Cells by NK Cells and T Cells,” Frontiers in Immunology 14 (2023): 1227572.
      S. Jin, Y. Sun, X. Liang, et al., “Emerging New Therapeutic Antibody Derivatives for Cancer Treatment,” Signal Transduction and Targeted Therapy 7, no. 1 (2022): 39.
      B. Blanco, C. Domínguez‐Alonso, and L. Alvarez‐Vallina, “Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy,” Clinical Cancer Research 27, no. 20 (2021): 5457–5464.
      S. Huang, S. M. J. van Duijnhoven, A. J. A. M. Sijts, and A. van Elsas, “Bispecific Antibodies Targeting Dual Tumor‐Associated Antigens in Cancer Therapy,” Journal of Cancer Research and Clinical Oncology 146 (2020): 3111–3122.
      E. A. Lasater, D. N. Amin, R. Bannerji, et al., “Targeting MCL‐1 and BCL‐2 With Polatuzumab Vedotin and Venetoclax Overcomes Treatment Resistance in R/R Non‐Hodgkin Lymphoma: Results From Preclinical Models and a Phase Ib Study,” American Journal of Hematology 98, no. 3 (2023): 449–463.
      L. E. Budde, A. J. Olszewski, S. Assouline, et al., “Mosunetuzumab With Polatuzumab Vedotin in Relapsed or Refractory Aggressive Large B Cell Lymphoma: A Phase 1b/2 Trial,” Nature Medicine 30, no. 1 (2024): 229–239.
      P. Moreau, A. L. Garfall, N. W. C. J. van de Donk, et al., “Teclistamab in Relapsed or Refractory Multiple Myeloma,” New England Journal of Medicine 387, no. 6 (2022): 495–505.
      A. Minchom, S. Viteri, L. Bazhenova, et al., “Amivantamab Compared With Real‐World Therapies in Patients With Advanced Non‐Small Cell Lung Cancer Harboring EGFR Exon 20 Insertion Mutations Who Progressed After Platinum‐Based Chemotherapy,” Lung Cancer 168 (2022): 74–82.
      C. Zhou, S. Ren, Y. Luo, et al., “A Phase Ib/II Study of AK112, a PD‐1/VEGF Bispecific Antibody, as First or Second‐Line Therapy for Advanced Non‐Small Cell Lung Cancer (NSCLC),” Hypertension 1 (2022): 10.
      N. E. Weisser, G. Wickman, L. Abraham, et al., “Abstract 1005: The Bispecific Antibody Zanidatamab's (ZW25's) Unique Mechanisms of Action and Durable Anti‐Tumor Activity in HER2‐Expressing Cancers,” supplement, Cancer Research 81, no. S13 (2021): 1005.
      M. Hutchings, R. Mous, M. R. Clausen, et al., “Dose Escalation of Subcutaneous Epcoritamab in Patients With Relapsed or Refractory B‐Cell Non‐Hodgkin Lymphoma: An Open‐Label, Phase 1/2 Study,” Lancet 398, no. 10306 (2021): 1157–1169.
      S. Sasse, J. Momotow, A. Plütschow, et al., “AFM13 in Patients With Relapsed or Refractory Hodgkin Lymphoma: Final Results of an Open‐Label, Randomized, Multicenter Phase II Trial,” Blood 136 (2020): 31–32.
      A. D. Cohen, S. J. Harrison, A. Krishnan, et al., “Initial Clinical Activity and Safety of BFCR4350A, a FcRH5/CD3 T‐Cell‐Engaging Bispecific Antibody, in Relapsed/Refractory Multiple Myeloma,” supplement, Blood 136, no. S1 (2020): 42–43.
      R. Nakamura, S. Lear, D. Wilson, et al., “Early Pharmacodynamic Changes in T‐Cell Activation, Proliferation, and Cytokine Production Confirm the Mode of Action of BFCR4350A, a FcRH5/CD3 T‐Cell‐Engaging Bispecific Antibody, in Patients With Relapsed/Refractory Multiple Myeloma,” Blood 136 (2020): 14–15.
      A. Y. Krishnan, M. C. Minnema, J. G. Berdeja, et al., “Updated Phase 1 Results From MonumenTAL‐1: First‐In‐Human Study of Talquetamab, a G Protein‐Coupled Receptor Family C Group 5 Member D x CD3 Bispecific Antibody, in Patients With Relapsed/Refractory Multiple Myeloma,” Blood 138 (2021): 158.
      L. Paz‐Ares, T. M. Kim, D. Vicente, et al., “Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF‐β and PD‐L1, in Second‐Line Treatment of Patients With NSCLC: Results From an Expansion Cohort of a Phase 1 Trial,” Journal of Thoracic Oncology 15, no. 7 (2020): 1210–1222.
      C. Zhou, A. Xiong, W. Li, et al., “P77. 03 a Phase II Study of KN046 (Bispecific Anti‐PD‐L1/CTLA‐4) in Patients (PTS) With Metastatic Non‐Small Cell Lung Cancer (NSCLC),” Journal of Thoracic Oncology 16, no. 3 (2021): S636.
      M. A. Ströhlein, F. Lordick, D. Rüttinger, et al., “Immunotherapy of Peritoneal Carcinomatosis With the Antibody Catumaxomab in Colon, Gastric, or Pancreatic Cancer: An Open‐Label, Multicenter, Phase I/II Trial,” Oncology Research and Treatment 34, no. 3 (2011): 101–108.
      M. Pishvaian, M. A. Morse, J. McDevitt, et al., “Phase 1 Dose Escalation Study of MEDI‐565, a Bispecific T‐Cell Engager That Targets Human Carcinoembryonic Antigen, in Patients With Advanced Gastrointestinal Adenocarcinomas,” Clinical Colorectal Cancer 15, no. 4 (2016): 345–351.
      S. Mahmood, D. Li, A. Lee, et al., “A Multicenter, Phase Ib/II, Open‐Label Study of Tivozanib With Durvalumab in Advanced Hepatocellular Carcinoma (DEDUCTIVE),” Future oncology 18, no. 40 (2022): 4465–4471, https://doi.org/10.2217/fon-2022-0844.
      F. Meric‐Bernstam, M. Beeram, E. Hamilton, et al., “Zanidatamab, a Novel Bispecific Antibody, for the Treatment of Locally Advanced or Metastatic HER2‐Expressing or HER2‐Amplified Cancers: A Phase 1, Dose‐Escalation and Expansion Study,” Lancet Oncology 23, no. 12 (2021): 1558–1570, https://doi.org/10.1016/S1470-2045(22)00621-0.
      M. Kudo, R. S. Finn, S. Qin, et al., “Lenvatinib Versus Sorafenib in First-Line Treatment of Patients With Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial,” Lancet 391, no. 10126 (2021): 1163–1173, https://doi.org/10.1016/S0140-6736(18)30207-1.
      M. Alsina, V. Boni, J. H. M. Schellens, et al., “First‐In‐Human Phase 1/2 Study of MCLA‐128, a Full Length IgG1 Bispecific Antibody Targeting HER2 and HER3: Final Phase 1 Data and Preliminary Activity in HER2+ Metastatic Breast Cancer (MBC),” supplement, Journal of Clinical Oncology 35, no. S15 (2017): 2522.
      X. Wu, J. Ji, H. Lou, et al., “Efficacy and Safety of Cadonilimab, an Anti‐PD‐1/CTLA4 Bi‐Specific Antibody, in Previously Treated Recurrent or Metastatic (R/M) Cervical Cancer: A Multicenter, Open‐Label, Single‐Arm, Phase II Trial (075),” Gynecologic Oncology 166 (2022): S47–S48.
      J. Strauss, M. E. Gatti‐Mays, B. C. Cho, et al., “Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF‐β and PD‐L1, in Patients With Human Papillomavirus‐Associated Malignancies,” Journal for Immunotherapy of Cancer 8, no. 2 (2020): e001395.
      H.‐D. Hummel, P. Kufer, C. Grüllich, et al., “Pasotuxizumab, a BiTE Immune Therapy for Castration‐Resistant Prostate Cancer: Phase I, Dose‐Escalation Study Findings,” Immunotherapy 13, no. 2 (2021): 125–141.
      J. J. Sacco, R. Carvajal, M. O. Butler, et al., “64MO A Phase (ph) II, Multi‐Center Study of the Safety and Efficacy of Tebentafusp (tebe)(IMCgp100) in Patients (pts) With Metastatic Uveal Melanoma (mUM),” Annals of Oncology 31 (2020): S1442–S1443.
      D. Mandikian, N. Takahashi, A. A. Lo, et al., “Relative Target Affinities of T‐Cell–Dependent Bispecific Antibodies Determine Biodistribution in a Solid Tumor Mouse Model,” Molecular Cancer Therapeutics 17, no. 4 (2018): 776–785.
      A. S. Boje, L. Pekar, K. Koeped, et al., “Impact of Antibody Architecture and Paratope Valency on Effector Functions of Bispecific NKp30 x EGFR Natural Killer Cell Engagers,” Mabs 16, no. 1 (2024): 2315640.
      E. K. Makowski, P. C. Kinnunen, J. Huang, et al., “Co‐Optimization of Therapeutic Antibody Affinity and Specificity Using Machine Learning Models That Generalize to Novel Mutational Space,” Nature Communications 13, no. 1 (2022): 3788.
      X. Chen, Y. Wang, and Y. Li, “Removing Half Antibody Byproduct by Protein A Chromatography During the Purification of a Bispecific Antibody,” Protein expression and purification 172, (2020): 105635, https://doi.org/10.1016/j.pep.2020.105635.
      S. Ståhl, T. Gräslund, A. Eriksson Karlström, F. Y. Frejd, P.‐Å. Nygren, and J. Löfblom, “Affibody Molecules in Biotechnological and Medical Applications,” Trends in Biotechnology 35, no. 8 (2017): 691–712.
      P. Brünker, K. Wartha, T. Friess, et al., “RG7386, a Novel Tetravalent FAP‐DR5 Antibody, Effectively Triggers FAP‐Dependent, Avidity‐Driven DR5 Hyperclustering and Tumor Cell Apoptosis,” Molecular Cancer Therapeutics 15, no. 5 (2016): 946–957.
      S. Vafaei, A. O. Zekiy, R. A. Khanamir, et al., “Combination Therapy With Immune Checkpoint Inhibitors (ICIs); A New Frontier,” Cancer Cell International 22 (2022): 2.
      A. Naimi, R. N. Mohammed, A. Raji, et al., “Tumor Immunotherapies by Immune Checkpoint Inhibitors (ICIs); The Pros and Cons,” Cell Communication and Signaling 20, no. 1 (2022): 44.
      R. Pei, Y. Shi, S. Lv, et al., “Nivolumab vs Pembrolizumab for Treatment of US Patients With Platinum‐Refractory Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: A Network Meta‐Analysis and Cost‐Effectiveness Analysis,” JAMA Network Open 4, no. 5 (2021): e218065‐e.
      J. D. Wolchok, V. Chiarion‐Sileni, R. Gonzalez, et al., “Overall Survival With Combined Nivolumab and Ipilimumab in Advanced Melanoma,” New England Journal of Medicine 377, no. 14 (2017): 1345–1356.
      Y.‐A. Vano, R. Elaidi, M. Bennamoun, et al., “Nivolumab, Nivolumab–Ipilimumab, and VEGFR‐Tyrosine Kinase Inhibitors as First‐Line Treatment for Metastatic Clear‐Cell Renal Cell Carcinoma (BIONIKK): A Biomarker‐Driven, Open‐Label, Non‐Comparative, Randomised, Phase 2 Trial,” Lancet Oncology 23, no. 5 (2022): 612–624.
      S. Downs‐Canner and A. Weiss, “Systemic Therapy Advances for HER2‐Positive and Triple Negative Breast Cancer–What the Surgeon Needs to Know,” Clinical Breast Cancer 24 (2024): 328–336.
      R. Mahmoudi, H. Dianat‐Moghadam, M. Poorebrahim, et al., “Recombinant Immunotoxins Development for HER2‐Based Targeted Cancer Therapies,” Cancer Cell International 21 (2021): 470.
      D. G. McNeel, H. A. Smith, J. C. Eickhoff, et al., “Phase I Trial of Tremelimumab in Combination With Short‐Term Androgen Deprivation in Patients With PSA‐Recurrent Prostate Cancer,” Cancer Immunology, Immunotherapy 61 (2012): 1137–1147.
      S. F. Slovin, C. S. Higano, O. Hamid, et al., “Ipilimumab Alone or in Combination With Radiotherapy in Metastatic Castration‐Resistant Prostate Cancer: Results From an Open‐Label, Multicenter Phase I/II Study,” Annals of Oncology 24, no. 7 (2013): 1813–1821.
      P. Sharma, R. K. Pachynski, V. Narayan, et al., “Nivolumab Plus Ipilimumab for Metastatic Castration‐Resistant Prostate Cancer: Preliminary Analysis of Patients in the CheckMate 650 Trial,” Cancer Cell 38, no. 4 (2020): 489–499.e3.
      T. F. Cloughesy, A. Y. Mochizuki, J. R. Orpilla, et al., “Neoadjuvant Anti‐PD‐1 Immunotherapy Promotes a Survival Benefit With Intratumoral and Systemic Immune Responses in Recurrent Glioblastoma,” Nature Medicine 25, no. 3 (2019): 477–486.
      S. Sahebjam, P. A. Forsyth, N. D. Tran, et al., “Hypofractionated Stereotactic Re‐Irradiation With Pembrolizumab and Bevacizumab in Patients With Recurrent High‐Grade Gliomas: Results From a Phase I Study,” Neuro‐oncology 23, no. 4 (2021): 677–686.
      J. M. Zaretsky, A. Garcia‐Diaz, D. S. Shin, et al., “Mutations Associated With Acquired Resistance to PD‐1 Blockade in Melanoma,” New England Journal of Medicine 375, no. 9 (2016): 819–829.
      M. Sade‐Feldman, Y. J. Jiao, J. H. Chen, et al., “Resistance to Checkpoint Blockade Therapy Through Inactivation of Antigen Presentation,” Nature Communications 8, no. 1 (2017): 1136.
      T. E. Keenan, K. P. Burke, and E. M. Van Allen, “Genomic Correlates of Response to Immune Checkpoint Blockade,” Nature Medicine 25, no. 3 (2019): 389–402.
      C. A. Murga‐Zamalloa, N. A. Brown, and R. A. Wilcox, “Expression of the Checkpoint Receptors LAG‐3, TIM‐3 and VISTA in Peripheral T Cell Lymphomas,” Journal of Clinical Pathology 73, no. 4 (2020): 197–203.
      I. Muneer, S. Ahmad, A. Naz, et al., “Discovery of Novel Inhibitors From Medicinal Plants for v‐Domain ig Suppressor of T‐Cell Activation,” Frontiers in Molecular Biosciences 8 (2021): 716735.
      M. Lee, R. M. Samstein, C. Valero, T. A. Chan, and L. Morris, “Tumor Mutational Burden as a Predictive Biomarker for Checkpoint Inhibitor Immunotherapy,” Human Vaccines & Immunotherapeutics 16, no. 1 (2020): 112–115.
      A. Kitchlu, K. D. Jhaveri, S. Wadhwani, et al., “A Systematic Review of Immune Checkpoint Inhibitor–Associated Glomerular Disease,” Kidney International Reports 6, no. 1 (2021): 66–77.
      D. T. Le, J. N. Durham, K. N. Smith, et al., “Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD‐1 Blockade,” Science 357, no. 6349 (2017): 409–413.
      R. M. Lupinacci, A. Goloudina, O. Buhard, et al., “Prevalence of Microsatellite Instability in Intraductal Papillary Mucinous Neoplasms of the Pancreas,” Gastroenterology 154, no. 4 (2018): 1061–1065.
      H. Taghizadeh, M. Marhold, E. Tomasich, S. Udovica, A. Merchant, and M. Krainer, “Immune Checkpoint Inhibitors in mCRPC‐Rationales, Challenges and Perspectives,” Oncoimmunology 8, no. 11 (2019): e1644109.
      J. F. De Groot, G. Fuller, A. J. Kumar, et al., “Tumor Invasion After Treatment of Glioblastoma With Bevacizumab: Radiographic and Pathologic Correlation in Humans and Mice,” Neuro‐oncology 12, no. 3 (2010): 233–242.
      J. F. Deeken and W. Löscher, “The Blood‐Brain Barrier and Cancer: Transporters, Treatment, and Trojan Horses,” Clinical Cancer Research 13, no. 6 (2007): 1663–1674.
      I. Vitale, E. Shema, S. Loi, and L. Galluzzi, “Intratumoral Heterogeneity in Cancer Progression and Response to Immunotherapy,” Nature Medicine 27, no. 2 (2021): 212–224.
      L. Li, R. Yu, T. Cai, et al., “Effects of Immune Cells and Cytokines on Inflammation and Immunosuppression in the Tumor Microenvironment,” International Immunopharmacology 88 (2020): 106939.
      H. Dianat‐Moghadam, R. Nedaeinia, M. Keshavarz, M. Azizi, M. Kazemi, and R. Salehi, “Immunotherapies Targeting Tumor Vasculature: Challenges and Opportunities,” Frontiers in Immunology 14 (2023): 1226360.
      P. Falvo, S. Orecchioni, R. Hillje, et al., “Cyclophosphamide and Vinorelbine Activate Stem‐Like CD8+ T Cells and Improve Anti‐PD‐1 Efficacy in Triple‐Negative Breast Cancer,” Cancer Research 81, no. 3 (2021): 685–697.
      S. Grabosch, M. Bulatovic, F. Zeng, et al., “Cisplatin‐Induced Immune Modulation in Ovarian Cancer Mouse Models With Distinct Inflammation Profiles,” Oncogene 38, no. 13 (2019): 2380–2393.
      I. Salewski, J. Henne, L. Engster, et al., “Combined Gemcitabine and Immune‐Checkpoint Inhibition Conquers Anti‐PD‐L1 Resistance in Low‐Immunogenic Mismatch Repair‐Deficient Tumors,” International Journal of Molecular Sciences 22, no. 11 (2021): 5990.
      D. Fu, J. Wu, J. Lai, et al., “T Cell Recruitment Triggered by Optimal Dose Platinum Compounds Contributes to the Therapeutic Efficacy of Sequential PD‐1 Blockade in a Mouse Model of Colon Cancer,” American Journal of Cancer Research 10, no. 2 (2020): 473–490.
      S. Lévesque, J. Le Naour, F. Pietrocola, et al., “A Synergistic Triad of Chemotherapy, Immune Checkpoint Inhibitors, and Caloric Restriction Mimetics Eradicates Tumors in Mice,” Oncoimmunology 8, no. 11 (2019): e1657375.
      D. Saha, R. L. Martuza, and S. D. Rabkin, “Oncolytic Herpes Simplex Virus Immunovirotherapy in Combination With Immune Checkpoint Blockade to Treat Glioblastoma,” Immunotherapy 10, no. 9 (2018): 779–786.
      S. Dorta‐Estremera, R. L. Chin, G. Sierra, et al., “Mucosal HPV E6/E7 Peptide Vaccination in Combination With Immune Checkpoint Modulation Induces Regression of HPV+ Oral Cancers,” Cancer Research 78, no. 18 (2018): 5327–5339.
      B. W. Simons, F. Cannella, D. T. Rowley, and R. P. Viscidi, “Bovine Papillomavirus Prostate Cancer Antigen Virus‐Like Particle Vaccines Are Efficacious in Advanced Cancers in the TRAMP Mouse Spontaneous Prostate Cancer Model,” Cancer Immunology, Immunotherapy 69 (2020): 641–651.
      F. Stark, R. Weeratna, L. Deschatelets, et al., “An Archaeosome‐Adjuvanted Vaccine and Checkpoint Inhibitor Therapy Combination Significantly Enhances Protection From Murine Melanoma,” Vaccines 5, no. 4 (2017): 38.
      C.‐Y. Chen, P.‐Y. Wang, B. Hutzen, et al., “Cooperation of Oncolytic Herpes Virotherapy and PD‐1 Blockade in Murine Rhabdomyosarcoma Models,” Scientific Reports 7, no. 1 (2017): 2396.
      P. L. Lin, Y. M. Cheng, D. W. Wu, et al., “A Combination of Anti‐PD‐L1 mA b Plus Lm‐LLO‐E6 Vaccine Efficiently Suppresses Tumor Growth and Metastasis in HPV‐Infected Cancers,” Cancer Medicine 6, no. 9 (2017): 2052–2062.
      A. Derer, B. Frey, R. Fietkau, and U. S. Gaipl, “Immune‐Modulating Properties of Ionizing Radiation: Rationale for the Treatment of Cancer by Combination Radiotherapy and Immune Checkpoint Inhibitors,” Cancer Immunology, Immunotherapy 65 (2016): 779–786.
      A. M. Stessin, M. G. Clausi, Z. Zhao, et al., “Repolarized Macrophages, Induced by Intermediate Stereotactic Dose Radiotherapy and Immune Checkpoint Blockade, Contribute to Long‐Term Survival in Glioma‐Bearing Mice,” Journal of Neuro‐Oncology 147 (2020): 547–555.
      A. Helm, W. Tinganelli, P. Simoniello, et al., “Reduction of Lung Metastases in a Mouse Osteosarcoma Model Treated With Carbon Ions and Immune Checkpoint Inhibitors,” International Journal of Radiation Oncology* Biology* Physics 109, no. 2 (2021): 594–602.
      Z. Xu, J. Feng, Y. Weng, Y. Jin, and M. Peng, “Combination of Immune Checkpoint Inhibitors and Radiotherapy for Advanced Non‐Small‐Cell Lung Cancer and Prostate Cancer: A Meta‐Analysis,” Journal of Oncology 2021 (2021): 1–10.
      A. Amin, E. R. Plimack, M. S. Ernstoff, et al., “Safety and Efficacy of Nivolumab in Combination With Sunitinib or Pazopanib in Advanced or Metastatic Renal Cell Carcinoma: The CheckMate 016 Study,” Journal for Immunotherapy of Cancer 6 (2018): 109.
      P.‐T. Lin, W. Teng, W.‐J. Jeng, C.‐Y. Lin, S.‐M. Lin, and I.‐S. Sheen, “Combining Immune Checkpoint Inhibitor With Lenvatinib Prolongs Survival Than Lenvatinib Alone in Sorafenib‐Experienced Hepatocellular Carcinoma Patients,” European Journal of Gastroenterology & Hepatology 34, no. 2 (2022): 213–219.
      S. Fukuoka, H. Hara, N. Takahashi, et al., “Regorafenib Plus Nivolumab in Patients With Advanced Gastric or Colorectal Cancer: An Open‐Label, Dose‐Escalation, and Dose‐Expansion Phase Ib Trial (REGONIVO, EPOC1603),” Journal of Clinical Oncology 38, no. 18 (2020): 2053–2061.
      M. Kudo, K. Motomura, Y. Wada, et al., “Avelumab in Combination With Axitinib as First‐Line Treatment in Patients with Advanced Hepatocellular Carcinoma: Results from the Phase 1b VEGF Liver 100 Trial,” Liver cancer 10, no. 3 (2019): 249–259, https://doi.org/10.1159/000514420.
      J. F. Liu, C. Herold, K. P. Gray, et al., “Assessment of Combined Nivolumab and Bevacizumab in Relapsed Ovarian Cancer: A Phase 2 Clinical Trial,” JAMA Oncology 5, no. 12 (2019): 1731–1738.
      N. L. Bartlett, A. F. Herrera, E. Domingo‐Domenech, et al., “A Phase 1b Study of AFM13 in Combination With Pembrolizumab in Patients With Relapsed or Refractory Hodgkin Lymphoma,” Blood 136, no. 21 (2020): 2401–2409.
      B. Tan, A. Khattak, E. Felip, et al., “Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF‐β and PD‐L1, in Patients With Esophageal Adenocarcinoma: Results From a Phase 1 Cohort,” Targeted Oncology 16, no. 4 (2021): 435–446.
      Y. Y. Janjigian, J. Bendell, E. Calvo, et al., “CheckMate‐032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients With Metastatic Esophagogastric Cancer,” Journal of Clinical Oncology 36, no. 28 (2018): 2836–2844.
      A. Beck, L. Goetsch, C. Dumontet, and N. Corvaïa, “Strategies and Challenges for the Next Generation of Antibody–Drug Conjugates,” Nature Reviews Drug Discovery 16, no. 5 (2017): 315–337.
      C. Dumontet, J. M. Reichert, P. D. Senter, J. M. Lambert, and A. Beck, “Antibody–Drug Conjugates Come of Age in Oncology,” Nature Reviews Drug Discovery 22, no. 8 (2023): 641–661.
      J. Z. Drago, S. Modi, and S. Chandarlapaty, “Unlocking the Potential of Antibody–Drug Conjugates for Cancer Therapy,” Nature Reviews Clinical Oncology 18, no. 6 (2021): 327–344.
      S. Verma, D. Miles, L. Gianni, et al., “Trastuzumab Emtansine for HER2‐Positive Advanced Breast Cancer,” New England Journal of Medicine 367, no. 19 (2012): 1783–1791.
      H. M. Prince, Y. H. Kim, S. M. Horwitz, et al., “Brentuximab Vedotin or Physician's Choice in CD30‐Positive Cutaneous T‐Cell Lymphoma (ALCANZA): An International, Open‐Label, Randomised, Phase 3, Multicentre Trial,” Lancet 390, no. 10094 (2017): 555–566.
      H. M. Kantarjian, D. J. DeAngelo, M. Stelljes, et al., “Inotuzumab Ozogamicin Versus Standard Therapy for Acute Lymphoblastic Leukemia,” New England Journal of Medicine 375, no. 8 (2016): 740–753.
      P. F. Bross, J. Beitz, G. Chen, et al., “Approval Summary: Gemtuzumab Ozogamicin in Relapsed Acute Myeloid Leukemia,” Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 7, no. 6 (2001): 1490–1496.
      R. J. Kreitman, C. Dearden, P. L. Zinzani, et al., “Moxetumomab Pasudotox in Relapsed/Refractory Hairy Cell Leukemia,” Leukemia 32, no. 8 (2018): 1768–1777.
      L. Pasqualucci and R. Dalla‐Favera, “Genetics of Diffuse Large B‐Cell Lymphoma,” Blood 131, no. 21 (2018): 2307–2319.
      A. Bardia, I. A. Mayer, L. T. Vahdat, et al., “Sacituzumab Govitecan‐Hziy in Refractory Metastatic Triple‐Negative Breast Cancer,” New England Journal of Medicine 380, no. 8 (2019): 741–751.
      Z. Xu, D. Guo, Z. Jiang, et al., “Novel HER2‐Targeting Antibody‐Drug Conjugates of Trastuzumab Beyond T‐DM1 in Breast Cancer: Trastuzumab Deruxtecan (DS‐8201a) and (Vic‐) Trastuzumab Duocarmazine (Syd985),” European Journal of Medicinal Chemistry 183 (2019): 111682.
      P. F. Caimi, W. Ai, J. P. Alderuccio, et al., “Loncastuximab Tesirine in Relapsed or Refractory Diffuse Large B‐Cell Lymphoma (LOTIS‐2): A Multicentre, Open‐Label, Single‐Arm, Phase 2 Trial,” Lancet Oncology 22, no. 6 (2021): 790–800.
      E. S. Kim and A.‐S. Zt, “Tisotumab Vedotin‐Tftv in Previously Treated Recurrent or Metastatic Cervical Cancer: a Profile of Its Use in the USA,” Drugs & Therapy Perspectives 38, no. 9 (2022): 382–388.
      K. N. Moore, I. Vergote, A. Oaknin, et al., “FORWARD I: A Phase III Study of Mirvetuximab Soravtansine Versus Chemotherapy in Platinum‐Resistant Ovarian Cancer,” Future Oncology 14, no. 17 (2018): 1669–1678.
      T. Journeaux and G. J. L. Bernardes, “Homogeneous Multi‐Payload Antibody–Drug Conjugates,” Nature Chemistry 16 (2024): 854–870.
      F. Johann, S. Wöll, and H. Gieseler, “Evaluating the Potential of Cyclodextrins in Reducing Aggregation of Antibody–Drug Conjugates With Different Payloads,” Journal of Pharmaceutical Sciences 113 (2024): 2443–2453.
      N. Barron, S. Dickgiesser, M. Fleischer, et al., “A Generic Approach for Miniaturized Unbiased High‐Throughput Screens of Bispecific Antibodies and Biparatopic Antibody–Drug Conjugates,” International Journal of Molecular Sciences 25, no. 4 (2024): 2097.
      D. L. Niquille, K. M. Fitzgerald, N. Gera, et al., “Biparatopic Antibodies: Therapeutic Applications and Prospects,” Mabs 16, no. 1 (2024): 2310890.
      C. Fu, W. Tong, L. Yu, et al., “When Will the Immune‐Stimulating Antibody Conjugates (ISACs) be Transferred From Bench to Bedside,” Pharmacological Research 203 (2024): 107160.
    • Grant Information:
      This study was supported by National Natural Science Foundation of China (NO.82174457).
    • Contributed Indexing:
      Keywords: antibody−drug conjugates; bispecific antibodies; immune checkpoint inhibitors; monoclonal antibodies; tumor heterogeneity
    • Accession Number:
      0 (Antibodies, Bispecific)
      0 (Immune Checkpoint Inhibitors)
      0 (Immunoconjugates)
    • Publication Date:
      Date Created: 20241028 Date Completed: 20241028 Latest Revision: 20241028
    • Publication Date:
      20241028
    • Accession Number:
      10.1002/cbf.70011
    • Accession Number:
      39463028