Engineering Lattice Oxygen Regeneration of NiFe Layered Double Hydroxide Enhances Oxygen Evolution Catalysis Durability.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 0370543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3773 (Electronic) Linking ISSN: 14337851 NLM ISO Abbreviation: Angew Chem Int Ed Engl Subsets: PubMed not MEDLINE; MEDLINE
    • Publication Information:
      Publication: <2004-> : Weinheim : Wiley-VCH
      Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
    • Abstract:
      The lattice oxygen mechanism (LOM) endows NiFe layered double hydroxide (NiFe-LDH) with superior oxygen evolution reaction (OER) activity, yet the frequent evolution and sluggish regeneration of lattice oxygen intensify the dissolution of active species. Herein, we overcome this challenge by constructing the NiFe hydroxide/Ni 4 Mo alloy (NiFe-LDH/Ni 4 Mo) heterojunction electrocatalyst, featuring the Ni 4 Mo alloy as the oxygen pump to provide oxygenous intermediates and electrons for NiFe-LDH. The released lattice oxygen can be timely offset by the oxygenous species during the LOM process, balancing the regeneration of lattice oxygen and assuring the enhancement of the durability. In consequence, the durability of NiFe-LDH is significantly enhanced after the modification of Ni 4 Mo with an impressive durability for over 60 h, much longer than that of NiFe-LDH counterpart with only 10 h. In situ spectra and first-principle simulations reveal that the adsorption of OH - is significantly strengthened owing to the introduction of Ni 4 Mo, ensuring the rapid regeneration of lattice oxygen. Moreover, NiFe-LDH/Ni 4 Mo-based anion exchange membrane water electrolyzer (AEMWE) presents an impressive durability for over 150 h at 100 mA cm -2 . The oxygen pump strategy opens opportunities to balance the evolution and regeneration of lattice oxygen, enhancing the durability of efficient OER catalysts.
      (© 2024 Wiley-VCH GmbH.)
    • References:
      B. Zhang, Z. Wu, W. Shao, Y. Gao, W. Wang, T. Ma, L. Ma, S. Li, C. Cheng, C. Zhao, Angew. Chem. Int. Ed. 2022, 61, e202115331.
      H. H. You, D. S. Wu, D. H. Si, M. N. Cao, F. F. Sun, H. Zhang, H. M. Wang, T. F. Liu, R. Cao, J. Am. Chem. Soc. 2022, 144, 9254–9263.
      W. Du, Y. Shi, W. Zhou, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2021, 60, 7051–7055.
      H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 2020, 32, 1806326.
      F. Song, L. C. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. L. Hu, J. Am. Chem. Soc. 2018, 140, 7748–7759.
      W. H. Lee, M. H. Han, Y.-J. Ko, B. K. Min, K. H. Chae, H.-S. Oh, Nat. Commun. 2022, 13, 605.
      Z. Y. Yu, Y. Duan, X. Y. Feng, X. X. Yu, M. R. Gao, S. H. Yu, Adv. Mater. 2021, 33, 2007100.
      G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, X. Feng, Adv. Mater. 2018, 30, 1706279.
      Z. Sun, L. Lin, J. He, D. Ding, T. Wang, J. Li, M. Li, Y. Liu, Y. Li, M. Yuan, B. Huang, H. Li, G. Sun, J. Am. Chem. Soc. 2022, 144, 8204–8213.
      H. Yi, S. Liu, C. Lai, G. Zeng, M. Li, X. Liu, B. Li, X. Huo, L. Qin, L. Li, M. Zhang, Y. Fu, Z. An, L. Chen, Adv. Energy Mater. 2021, 11, 2002863.
      L. C. Bai, S. W. Lee, X. L. Hu, Angew. Chem. Int. Ed. 2021, 60, 3095–3103.
      R. Chen, S. F. Hung, D. Zhou, J. Gao, C. Yang, H. Tao, H. B. Yang, L. Zhang, L. Zhang, Q. Xiong, H. M. Chen, B. Liu, Adv. Mater. 2019, 31, 1903909.
      W. Liu, X. Ding, J. Cheng, J. Jing, T. Li, X. Huang, P. Xie, X. Lin, H. Ding, Y. Kuang, D. Zhou, X. Sun, Angew. Chem. Int. Ed. 2024, e202406082.
      J. Rossmeisl, A. Logadottir, J. K. Nørskov, Chem. Phys. 2005, 319, 178–184.
      F. Dionigi, Z. Zeng, I. Sinev, T. Merzdorf, S. Deshpande, M. B. Lopez, S. Kunze, I. Zegkinoglou, H. Sarodnik, D. Fan, A. Bergmann, J. Drnec, J. F. d. Araujo, M. Gliech, D. Teschner, J. Zhu, W.-X. Li, J. Greeley, B. R. Cuenya, P. Strasser, Nat. Commun. 2020, 11, 2522.
      Z. W. Gao, J. Y. Liu, X. M. Chen, X. L. Zheng, J. Mao, H. Liu, T. Ma, L. Li, W. C. Wang, X. W. Du, Adv. Mater. 2019, 31, 1804769.
      I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159–1165.
      D. Y. Chung, P. P. Lopes, P. Farinazzo Bergamo Dias Martins, H. He, T. Kawaguchi, P. Zapol, H. You, D. Tripkovic, D. Strmcnik, Y. Zhu, S. Seifert, S. Lee, V. R. Stamenkovic, N. M. Markovic, Nat. Energy 2020, 5, 222–230.
      Z. Li, Y. Zhou, M. Xie, H. Cheng, T. Wang, J. Chen, Y. Lu, Z. Tian, Y. Lai, G. Yu, Angew. Chem. Int. Ed. 2023, 62, e202217815.
      K. Klyukin, K. M. Rosso, V. Alexandrov, J. Phys. Chem. C 2018, 122, 16086–16091.
      L. Peng, N. Yang, Y. Yang, Q. Wang, X. Xie, D. Sun-Waterhouse, L. Shang, T. Zhang, G. I. N. Waterhouse, Angew. Chem. Int. Ed. 2021, 60, 24612–24619.
      X. Ping, Y. Liu, L. Zheng, Y. Song, L. Guo, S. Chen, Z. Wei, Nat. Commun. 2024, 15, 2501.
      Y. An, X. Long, M. Ma, J. Hu, H. Lin, D. Zhou, Z. Xing, B. Huang, S. Yang, Adv. Energy Mater. 2019, 9, 1901454.
      C. Wang, P. L. Zhai, M. Y. Xia, W. Liu, J. F. Gao, L. C. Sun, J. A. Hou, Adv. Mater. 2023, 35, 2209307.
      Y. Y. Liao, R. C. He, W. H. Pan, Y. Li, Y. Y. Wang, J. Li, Y. X. Li, Chem. Eng. J. 2023, 464, 142669.
      Q. Wen, K. Yang, D. Huang, G. Cheng, X. Ai, Y. Liu, J. Fang, H. Li, L. Yu, T. Zhai, Adv. Energy Mater. 2021, 11, 2102353.
      Y. S. Jin, S. L. Huang, X. Yue, H. Y. Du, P. K. Shen, ACS Catal. 2018, 8, 2359–2363.
      X. Liu, H. Lu, S. Zhu, Z. Cui, Z. Li, S. Wu, W. Xu, Y. Liang, G. Long, H. Jiang, Angew. Chem. Int. Ed. 2023, 62, e202300800.
      Z. Cai, P. Wang, J. Zhang, A. Chen, J. Zhang, Y. Yan, X. Wang, Adv. Mater. 2022, 34, 2110696.
      M. Liu, K. A. Min, B. Han, L. Y. S. Lee, Adv. Energy Mater. 2021, 11, 2101281.
      K. Zhu, X. Zhu, W. Yang, Angew. Chem. Int. Ed. 2019, 58, 1252–1265.
      J. Huang, Y. Li, Y. Zhang, G. Rao, C. Wu, Y. Hu, X. Wang, R. Lu, Y. Li, J. Xiong, Angew. Chem. Int. Ed. 2019, 58, 17458–17464.
      X. Sun, X. Zhang, Y. Li, Y. Xu, H. Su, W. Che, J. He, H. Zhang, M. Liu, W. Zhou, W. Cheng, Q. Liu, Small Methods 2021, 5, 2100573.
      A. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y.-L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper, Y. Shao-Horn, Nat. Chem. 2017, 9, 457–465.
      Z. Y. He, J. Zhang, Z. H. Gong, H. Lei, D. Zhou, N. A. Zhang, W. J. Mai, S. J. Zhao, Y. Chen, Nat. Commun. 2022, 13, 2191.
      P. L. Zhai, C. Wang, Y. Y. Zhao, Y. X. Zhang, J. F. Gao, L. C. Sun, J. A. Hou, Nat. Commun. 2023, 14, 1873.
      K. A. Sun, X. Y. Wu, Z. W. Zhuang, L. Y. Liu, J. J. Fang, L. Y. Zeng, J. G. Ma, S. J. Liu, J. Z. Li, R. Y. Dai, X. Tan, K. Yu, D. Liu, W. C. Cheong, A. J. Huang, Y. Q. Liu, Y. Pan, H. Xiao, C. Chen, Nat. Commun. 2022, 13, 6260.
      K. Fan, H. Y. Zou, Y. Lu, H. Chen, F. S. Li, J. X. Liu, L. C. Sun, L. P. Tong, M. F. Toney, M. L. Sui, J. G. Yu, ACS Nano 2018, 12, 12369–12379.
      F. Lu, D. Yi, S. Liu, F. Zhan, B. Zhou, L. Gu, D. Golberg, X. Wang, J. Yao, Angew. Chem. Int. Ed. 2020, 59, 17712–17718.
      W. H. Lee, M. H. Han, U. Lee, K. H. Chae, H. Kim, Y. J. Hwang, B. K. Min, C. H. Choi, H.-S. Oh, ACS Sustainable Chem. Eng. 2020, 8, 14071–14081.
      A. Meena, P. Thangavel, A. S. Nissimagoudar, A. Narayan Singh, A. Jana, D. Sol Jeong, H. Im, K. S. Kim, Chem. Eng. J. 2022, 430, 132623.
      K. Yue, J. Liu, Y. Zhu, C. Xia, P. Wang, J. Zhang, Y. Kong, X. Wang, Y. Yan, B. Y. Xia, Energy Environ. Sci. 2021, 14, 6546–6553.
      J. Chang, Q. Lv, G. Li, J. Ge, C. Liu, W. Xing, Appl. Catal. B. 2017, 204, 486–496.
      D. Chanda, K. Kannan, J. Gautam, M. M. Meshesha, S. G. Jang, V. A. Dinh, B. L. Yang, Appl. Catal. B. 2023, 321, 122039.
      M. Bhushan, M. Mani, A. K. Singh, A. B. Panda, V. K. Shahi, J. Mater. Chem. A 2020, 8, 17089–17097.
      X. Lu, C. Zhao, Nat. Commun. 2015, 6, 6616.
      G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50.
      J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
      H. S. Park, K. E. Kweon, H. Ye, E. Paek, G. S. Hwang, A. J. Bard, J. Phys. Chem. C 2011, 115, 17870–17879.
      V. Wang, N. Xu, J. C. Liu, G. Tang, W. T. Geng, Comput. Phys. Commun. 2021, 267, 108033.
      R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, R. Dronskowski, J. Comput. Chem. 2020, 41, 1931–1940.
      Y. S. Park, J. H. Lee, M. J. Jang, J. Jeong, S. M. Park, W.-S. Choi, Y. Kim, J. Yang, S. M. Choi, Int. J. Hydrogen Energy 2020, 45, 36–45.
      Y. S. Park, J. Jeong, Y. Noh, M. J. Jang, J. Lee, K. H. Lee, D. C. Lim, M. H. Seo, W. B. Kim, J. Yang, S. M. Choi, Appl. Catal. B. 2021, 292, 120170.
      T. Pandiarajan, L. John Berchmans, S. Ravichandran, RSC Adv. 2015, 5, 34100–34108.
    • Grant Information:
      52071119, 52271170, 52027801 National Natural Science Foundation of China; JQ2023E004 Heilongjiang Natural Science Funds for Distinguished Young Scholar
    • Contributed Indexing:
      Keywords: NiFe layered double hydroxides; durability; lattice oxygen mechanism; lattice oxygen regeneration; oxygen evolution reaction
    • Publication Date:
      Date Created: 20241025 Latest Revision: 20250106
    • Publication Date:
      20250106
    • Accession Number:
      10.1002/anie.202413250
    • Accession Number:
      39451124