Implications of the Lipidic Ecosystem for the Membrane Binding of ApoE Signal Peptide: Importance of Sphingomyelin.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-VCH Verlag Country of Publication: Germany NLM ID: 100937360 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-7633 (Electronic) Linking ISSN: 14394227 NLM ISO Abbreviation: Chembiochem Subsets: MEDLINE
    • Publication Information:
      Original Publication: Weinheim, Germany : Wiley-VCH Verlag, c2000-
    • Subject Terms:
    • Abstract:
      The unidirectional movement of nascent secretory proteins in the cell is primarily assisted by the signal recognition particles (SRP). However, this does not completely justify the importance of the signal peptide (SP) which gets eliminated after the protein translocation. We have earlier demonstrated that a negatively charged lipid such as POPG plays an important role in the higher binding affinity and cholesterol-discriminating ability of the apolipoprotein E (ApoE) SP. In this present work, we aimed to understand the role of sphingomyelin, an important constituent of ER, on the membrane binding of ApoE SP. Our results demonstrate that sphingomyelin promotes membrane binding but cannot discriminate cholesterol. However, sphingomyelin shows a synergistic effect with POPG toward the membrane binding of the ApoE SP. We have further shown that the membrane domains do not have any impact on the binding of ApoE SP. Based on our results we propose that the lipid composition of the endoplasmic reticulum (ER) where ApoE translocates, enhances the binding of the ApoE signal peptide to the ER membrane.
      (© 2024 Wiley-VCH GmbH.)
    • References:
      D. K. Breslow, Cold Spring Harb. Perspect. Biol. 2013, 5, a013326.
      G. van Meer, D. R. Voelker, G. W. Feigenson, Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124.
      H. J. Sharpe, T. J. Stevens, S. Munro, Cell 2010, 142, 158–169.
      J. Lippincott-Schwartz, R. D. Phair, Annu. Rev. Biophys. 2010, 39, 559–578.
      R. Chrast, G. Saher, K. A. Nave, M. H. Verheijen, J. Lipid Res. 2011, 52, 419–434.
      D. Lingwood, K. Simons, Science 2010, 327, 46–50.
      K. H. Choo, S. Ranganathan, BMC Bioinform. 2008, 12, 1471–2105.
      B. Martoglio, Biochem. Soc. Trans. 2003, 31, 1243–1247.
      S. Kaushik, H. He, R. E. Dalbey, Front. Physiol. 2022, 13, 933153.
      M. Kunze, J. Berger, Front. Physiol. 2015, 6, 259.
      M. T. De Marothy, A. Elofsson, Protein Sci. 2015, 24, 1057–1074.
      H. Watson, Essays Biochem. 2015, 59, 43–69.
      C. Y. Janda, J. Li, C. Oubridge, H. Hernández, C. V. Robinson, K. Nagai, Nature 2010, 465, 507–510.
      R. W. Mahley, K. H. Weisgraber, Y. Huang, J. Lipid Res. 2009, 50, 22.
      R. W. Mahley, S. C. Rall Jr., Annu. Rev. Genom. Hum. Genet. 2000, 1, 507–537.
      M. Kockx, W. Jessup, L. Kritharides, Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1060–1067.
      D. T. Rutkowski, C. M. Ott, J. R. Polansky, V. R. Lingappa, J. Biol. Chem. 2003, 278, 30365–30372.
      M. Kockx, D. L. Guo, T. Huby, P. Lesnik, J. Kay, T. Sabaretnam, E. Jary, M. Hill, K. Gaus, J. Chapman, J. L. Stow, W. Jessup, L. Kritharides, Circ. Res. 2007, 101, 607–616.
      L. Mirdha, T. Sengupta, H. Chakraborty, Biophys. Chem. 2022, 291, 106907.
      S. Pradhan, L. Mirdha, T. Sengupta, H. Chakraborty, Langmuir 2024, 40, 8126–8132.
      A. Ridsdale, M. Denis, P. Y. Gougeon, J. K. Ngsee, J. F. Presley, X. Zha, Mol. Biol. Cell. 2006, 17, 1593–1605.
      G. A. Kumar, P. Sarkar, T. M. Stepniewski, M. Jafurulla, S. P. Singh, J. Selent, A. Chattopadhyay, Sci. Adv. 2021, 7, eabh2922.
      R. Majumder, M. A. Quinn-Allen, W. H. Kane, B. R. Lentz, Blood 2008, 112, 2795–2802.
      M. E. Haque, B. R. Lentz, Biochemistry 2002, 41, 10866–10876.
      R. C. MacDonald, R. I. MacDonald, B. P. Menco, K. Takeshita, N. K. Subbarao, L. R. Hu, Biochim. Biophys. Acta 1991, 30, 297–303.
      G. Meher, S. Sinha, G. P. Pattnaik, S. Ghosh Dastidar, H. Chakraborty, J. Phys. Chem. B 2019, 123, 7113–7122.
      G. P. Pattnaik, H. Chakraborty, Langmuir 2021, 37, 3477–3489.
      V. Koppaka, B. R. Lentz, Biophys. J. 1996, 70, 2930–2937.
      C. King, P. Sengupta, A. Y. Seo, J. Lippincott-Schwartz, Proc. Natl. Acad. Sci. U S A 2020, 117, 7225–7235.
      M. L. Frazier, J. R. Wright, A. Pokorny, P. F. Almeida, Biophys. J. 2007, 92, 2422–2433.
      K. Nagai, C. Oubridge, A. Kuglstatter, E. Menichelli, C. Isel, L. Jovine, EMBO J. 2003, 22, 3479–3485.
    • Grant Information:
      Science and Engineering Research Board (SERB); STR/2021/000029 SERB-Science and Technology Award; CRG/2021/002239 SERB-Science and Technology Award; SERB
    • Contributed Indexing:
      Keywords: Binding affinity; Lipid composition; Lipidic ecosystem; Signal peptide; Synergistic effect
    • Accession Number:
      0 (Sphingomyelins)
      0 (Apolipoproteins E)
      0 (Protein Sorting Signals)
      97C5T2UQ7J (Cholesterol)
      81490-05-3 (1-palmitoyl-2-oleoylglycero-3-phosphoglycerol)
      0 (Phosphatidylglycerols)
    • Publication Date:
      Date Created: 20241024 Date Completed: 20241119 Latest Revision: 20241119
    • Publication Date:
      20241119
    • Accession Number:
      10.1002/cbic.202400469
    • Accession Number:
      39444133