References: Vieira Junior FU, Antunes N, Vieira RW, Alvares LM, Costa ET. Hemolysis in extracorporeal circulation: relationship between time and procedures. Rev. Bras. Cir. Cardiovasc. 2012;27(4):535-541. https://doi.org/10.5935/1678-9741.20120095. (PMID: 10.5935/1678-9741.2012009523515726)
Born F, Chen J, Thierfelder N, Günther S, Peterß S, Hagl C, König F. Microbubble activity during extra corporeal life support. Thorac. Cardiovasc. Surg. 2017;65(Suppl. 01):S1-S110. https://doi.org/10.1055/s-0037-1598758. (PMID: 10.1055/s-0037-1598758)
Barak M, Katz Y. Microbubbles: pathophysiology and clinical implications. Chest. 2005;128(4):2918-2932. https://doi.org/10.1378/chest.128.4.2918. (PMID: 10.1378/chest.128.4.291816236969)
Stehouwer MC, Legg KR, de Vroege R, Kelder JC, Hofman E, de Mol BA, Bruins P. Clinical evaluation of the air-handling properties of contemporary oxygenators with integrated arterial filter. Perfusion. 2017;32(2):118-125. https://doi.org/10.1177/0267659116664402. (PMID: 10.1177/026765911666440227516417)
Reis EE, Menezes LD, Justo CC. Gaseous microemboli in cardiac surgery with cardiopulmonary bypass: the use of veno-arterial shunt as a preventive method. Rev. Bras. Cir. Cardiovasc. 2012;27(3):436-445. https://doi.org/10.5935/1678-9741.20120073. (PMID: 10.5935/1678-9741.2012007323288186)
Segers T, Stehouwer MC, de Somer FMJJ, de Mol BA, Versluis M. Optical verification and in-vitro characterization of two commercially available acoustic bubble counters for cardiopulmonary bypass systems. Perfusion. 2018;33(1):16-24. https://doi.org/10.1177/0267659117722595. (PMID: 10.1177/026765911772259528766987)
Bello V, Bodo E, Merlo S. Optical multi-parameter measuring system for fluid and air bubble recognition. Sensors (Basel). 2023;23(15):6684. https://doi.org/10.3390/s23156684. (PMID: 10.3390/s231566843757147010422303)
Panov AV, Lokshin LS, Gubko AV. Influence of gas microembolism on plasma concentration of protein S-100 and neurospecific enolase during open heart surgery under cardiopulmonary bypass. Klin. Eksper. Khir. 2023;11(1):121-125. Russian. https://doi.org/10.33029/2308-1198-2023-11-1-121-125.
Lokshin LS. Gas microembolism during extracorporeal circulation. Anesteziol. Reanimatol. 2015;(5):17-20. Russian.
Redaelli S, Magliocca A, Malhotra R, Ristagno G, Citerio G, Bellani G, Berra L, Rezoagli E. Nitric oxide: Clinical applications in critically ill patients. Nitric Oxide. 2022;121:20-33. https://doi.org/10.1016/j.niox.2022.01.007. (PMID: 10.1016/j.niox.2022.01.0073512306110189363)
Hataishi R, Rodrigues AC, Neilan TG, Morgan JG, Buys E, Shiva S, Tambouret R, Jassal DS, Raher MJ, Furutani E, Ichinose F, Gladwin MT, Rosenzweig A, Zapol WM, Picard MH, Bloch KD, Scherrer-Crosbie M. Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2006;291(1):H379-H384. https://doi.org/10.1152/ajpheart.01172.2005. (PMID: 10.1152/ajpheart.01172.200516443673)
Shen Z, Wang Z, Zhang J, Jing H. Hepatic injury in a rat cardiopulmonary bypass model. Interact. Cardiovasc. Thorac. Surg. 2008;7(1):18-22. https://doi.org/10.1510/icvts.2006.150979. (PMID: 10.1510/icvts.2006.15097917951269)
Radovskiy AM, Bautin AE, Marichev AO, Osovskikh VV, Semenova NY, Artyukhina ZE, Murashova LA, Zinserling VA. NO addition during gas oxygenation reduces liver and kidney injury during prolonged cardiopulmonary bypass. Pathophysiology. 2023;30(4):484-504. https://doi.org/10.3390/pathophysiology30040037. (PMID: 10.3390/pathophysiology300400373787385710594502)
Petrova NN, Kovaltsova RS, Dorofeykov VV, Mashek ON, Bautin AE, Tashkhanov DM. Mental disorders, psychological characteristics and markers of central nervous system damage in patients undergoing cardiac surgery with extracorporeal circulation. Nevrologicheskii Vestnik. 2016;(3):18-24. Russian.
Datzmann T, Messerer DAC, Münz F, Hoff mann A, Gröger M, Mathieu R, Mayer S, Gässler H, Zink F, McCook O, Merz T, Scheuerle A, Wolfschmitt EM, Thebrath T, Zuech S, Calzia E, Asfar P, Radermacher P, Kapapa T. The effect of targeted hyperoxemia in a randomized controlled trial employing a long-term resuscitated, model of combined acute subdural hematoma and hemorrhagic shock in swine with coronary artery disease: An exploratory, hypothesis generating study. Front. Med. (Lausanne). 2022;9:971882. https://doi.org/10.3389/fmed.2022.971882.
No Comments.